1887

Abstract

Methane-oxidizing bacteria (methanotrophs) play a vital role in reducing atmospheric methane emissions, and hence mitigating their potent global warming effects. A significant proportion of the methane released is thermogenic natural gas, containing associated short-chain alkanes as well as methane. It was one hundred years following the description of methanotrophs that facultative strains were discovered and validly described. These can use some multi-carbon compounds in addition to methane, often small organic acids, such as acetate, or ethanol, although strains can also use short-chain alkanes, presumably deriving a competitive advantage from this metabolic versatility. Here, we review the diversity and molecular ecology of facultative methanotrophs. We discuss the genetic potential of the known strains and outline the consequent benefits they may obtain. Finally, we review the biotechnological promise of these fascinating microbes.

Funding
This study was supported by the:
  • Leverhulme Trust (Award ECF2016-626)
    • Principle Award Recipient: Andrew Crombie
  • Leverhulme Trust (Award RPG2016-050)
    • Principle Award Recipient: J. Colin Murrell
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000977
2020-10-21
2024-12-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/166/10/894.html?itemId=/content/journal/micro/10.1099/mic.0.000977&mimeType=html&fmt=ahah

References

  1. Saunois M, Bousquet P, Poulter B, Peregon A, Ciais P et al. The global methane budget 2000–2012. Earth Syst Sci Data 2016; 8:697–751 [View Article]
    [Google Scholar]
  2. Prather MJ, Holmes CD, Hsu J. Reactive greenhouse gas scenarios: systematic exploration of uncertainties and the role of atmospheric chemistry. Geophys Res Lett 2012; 39:L09803 [View Article]
    [Google Scholar]
  3. Hansen J, Sato M, Ruedy R, Lacis A, Oinas V. Global warming in the twenty-first century: an alternative scenario. Proc Natl Acad Sci U S A 2000; 97:9875–9880 [View Article]
    [Google Scholar]
  4. Etiope G, Sherwood Lollar B. Abiotic methane on earth. Rev Geophys 2013; 51:276–299 [View Article]
    [Google Scholar]
  5. Etiope G, Ciccioli P. Earth's degassing: a missing ethane and propane source. Science 2009; 323:478 [View Article]
    [Google Scholar]
  6. Dalsøren SB, Myhre G, Hodnebrog Øivind, Myhre CL, Stohl A et al. Discrepancy between simulated and observed ethane and propane levels explained by underestimated fossil emissions. Nat Geosci 2018; 11:178–184 [View Article]
    [Google Scholar]
  7. Etiope G. Natural Gas Seepage: the Earth’s Hydrocarbon Degassing Cham, Switzerland: Springer International Publishing; 2015
    [Google Scholar]
  8. Etiope G, Klusman RW. Microseepage in drylands: flux and implications in the global atmospheric source/sink budget of methane. Glob Planet Change 2010; 72:265–274 [View Article]
    [Google Scholar]
  9. Schimmelmann A, Ensminger SA, Drobniak A, Mastalerz M, Etiope G et al. Natural geological seepage of hydrocarbon gas in the Appalachian Basin and Midwest USA in relation to shale tectonic fracturing and past industrial hydrocarbon production. Sci Total Environ 2018; 644:982–993 [View Article]
    [Google Scholar]
  10. Reeburgh WS. Global methane biogeochemistry. In Holland HD, Turekian KK. (editors) Treatise on Geochemistry Amsterdam: Elsevier; 2007 pp 1–32
    [Google Scholar]
  11. Lelieveld J, Crutzen PJ, Dentener FJ. Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus B Chem Phys Meteorol 1998; 50:128–150 [View Article]
    [Google Scholar]
  12. Curry CL. Modeling the soil consumption of atmospheric methane at the global scale. Global Biogeochem Cycles 2007; 21:GB4012 [View Article]
    [Google Scholar]
  13. Dunfield PF. The soil methane sink. In Reay DS, Hewitt N, Smith K, Grace J. (editors) Greenhouse Gas Sinks Wallingford, UK: CAB International; 2007 pp 152–179
    [Google Scholar]
  14. Knittel K, Boetius A. Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 2009; 63:311–334 [View Article]
    [Google Scholar]
  15. Welte CU, Rasigraf O, Vaksmaa A, Versantvoort W, Arshad A et al. Nitrate- and nitrite-dependent anaerobic oxidation of methane. Environ Microbiol Rep 2016; 8:941–955 [View Article]
    [Google Scholar]
  16. Leahy JG, Batchelor PJ, Morcomb SM. Evolution of the soluble diiron monooxygenases. FEMS Microbiol Rev 2003; 27:449–479 [View Article]
    [Google Scholar]
  17. Coleman NV, Bui NB, Holmes AJ. Soluble di-iron monooxygenase gene diversity in soils, sediments and ethene enrichments. Environ Microbiol 2006; 8:1228–1239 [View Article]
    [Google Scholar]
  18. Semrau JD, DiSpirito AA, Yoon S. Methanotrophs and copper. FEMS Microbiol Rev 2010; 34:496–531 [View Article]
    [Google Scholar]
  19. Rojo F. Degradation of alkanes by bacteria. Environ Microbiol 2009; 11:2477–2490 [View Article]
    [Google Scholar]
  20. Shennan JL. Utilisation of C2–C4 gaseous hydrocarbons and isoprene by microorganisms. J Chem Technol Biotechnol 2006; 81:237–256
    [Google Scholar]
  21. Holmes AJ, Coleman NV. Evolutionary ecology and multidisciplinary approaches to prospecting for monooxygenases as biocatalysts. Antonie van Leeuwenhoek 2008; 94:75–84 [View Article]
    [Google Scholar]
  22. Osborne CD, Haritos VS. Beneath the surface: evolution of methane activity in the bacterial multicomponent monooxygenases. Mol Phylogenet Evol 2019; 139:106527 [View Article]
    [Google Scholar]
  23. Hanson RS, Hanson TE. Methanotrophic bacteria. Microbiol Rev 1996; 60:439–471 [View Article]
    [Google Scholar]
  24. van Teeseling MCF, Pol A, Harhangi HR, van der Zwart S, Jetten MSM et al. Expanding the verrucomicrobial methanotrophic world: description of three novel species of Methylacidimicrobium gen. nov. Appl Environ Microbiol 2014; 80:6782–6791 [View Article]
    [Google Scholar]
  25. Rasigraf O, Kool DM, Jetten MSM, Sinninghe Damsté JS, Ettwig KF. Autotrophic carbon dioxide fixation via the Calvin-Benson-Bassham cycle by the denitrifying methanotroph “Candidatus Methylomirabilis oxyfera”. Appl Environ Microbiol 2014; 80:2451–2460 [View Article]
    [Google Scholar]
  26. Op den Camp HJM, Islam T, Stott MB, Harhangi HR, Hynes A et al. Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia . Environ Microbiol Rep 2009; 1:293–306 [View Article]
    [Google Scholar]
  27. Patel RN, Hoare SL, Hoare DS, Taylor BF. [14C]Acetate assimilation by a type I obligate methylotroph, Methylococcus capsulatus . Appl Environ Microb 1977; 34:607–610 [View Article][PubMed]
    [Google Scholar]
  28. Eccleston M, Kelly DP. Assimilation and toxicity of some exogenous C1 compounds, alcohols, sugars and acetate in the methane-oxidizing bacterium Methylococcus capsulatus . J Gen Microbiol 1973; 75:211–221 [View Article]
    [Google Scholar]
  29. Shishkina VN, Trotsenko YA. Multiple enzymic lesions in obligate methanotrophic bacteria. FEMS Microbiol Lett 1982; 13:237–242 [View Article]
    [Google Scholar]
  30. Wadzinski AM, Ribbons DW. Utilization of acetate by Methanomonas methanooxidans . J Bacteriol 1975; 123:380–381 [View Article]
    [Google Scholar]
  31. Xing X-H, Wu H, Luo M-F, Wang B-P. Effects of organic chemicals on growth of Methylosinus trichosporium OB3b. Biochem Eng J 2006; 31:113–117 [View Article]
    [Google Scholar]
  32. Semrau JD, DiSpirito AA, Vuilleumier S. Facultative methanotrophy: false leads, true results, and suggestions for future research. FEMS Microbiol Lett 2011; 323:1–12 [View Article]
    [Google Scholar]
  33. Dedysh SN, Dunfield PF. Facultative and obligate methanotrophs how to identify and differentiate them. Methods Enzymol 2011; 495:32–61
    [Google Scholar]
  34. Dedysh SN, Dunfield PF. Facultative methane oxidizers. In McGenity TJ. editor Taxonomy, Genomics and Ecophysiology of Hydrocarbon-Degrading Microbes Cham: Springer International Publishing; 2018 pp 1–20
    [Google Scholar]
  35. Belova SE, Kulichevskaya IS, Bodelier PLE, Dedysh SN. Methylocystis bryophila sp. nov., a facultatively methanotrophic bacterium from acidic Sphagnum peat, and emended description of the genus Methylocystis (ex Whittenbury et al. 1970) Bowman et al. 1993. Int J Syst Evol Microbiol 2013; 63:1096–1104 [View Article]
    [Google Scholar]
  36. Dunfield PF, Belova SE, Vorob'ev AV, Cornish SL, Dedysh SN. Methylocapsa aurea sp. nov., a facultative methanotroph possessing a particulate methane monooxygenase, and emended description of the genus Methylocapsa . Int J Syst Evol Microbiol 2010; 60:2659–2664 [View Article]
    [Google Scholar]
  37. Im J, Lee SW, Yoon S, DiSpirito AA, Semrau JD. Characterization of a novel facultative Methylocystis species capable of growth on methane, acetate and ethanol. Environ Microbiol Rep 2011; 3:174–181 [View Article]
    [Google Scholar]
  38. Dedysh SN, Knief C, Dunfield PF. Methylocella species are facultatively methanotrophic. J Bacteriol 2005; 187:4665–4670 [View Article]
    [Google Scholar]
  39. Belova SE, Baani M, Suzina NE, Bodelier PLE, Liesack W et al. Acetate utilization as a survival strategy of peat-inhabiting Methylocystis spp. Environ Microbiol Rep 2011; 3:36–46 [View Article]
    [Google Scholar]
  40. Stoecker K, Bendinger B, Schöning B, Nielsen PH, Nielsen JL et al. Cohn’s Crenothrix is a filamentous methane oxidizer with an unusual methane monooxygenase. Proc Natl Acad Sci U S A 2006; 103:2363–2367 [View Article]
    [Google Scholar]
  41. Dedysh SN, Berestovskaya YY, Vasylieva LV, Belova SE, Khmelenina VN et al. Methylocella tundrae sp. nov., a novel methanotrophic bacterium from acidic tundra peatlands. Int J Syst Evol Microbiol 2004; 54:151–156 [View Article]
    [Google Scholar]
  42. Dedysh SN, Liesack W, Khmelenina VN, Suzina NE, Trotsenko YA et al. Methylocella palustris gen. nov., sp. nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. Int J Syst Evol Microbiol 2000; 50:955–969 [View Article]
    [Google Scholar]
  43. Dunfield PF, Khmelenina VN, Suzina NE, Trotsenko YA, Dedysh SN. Methylocella silvestris sp. nov., a novel methanotroph isolated from an acidic forest cambisol. Int J Syst Evol Microbiol 2003; 53:1231–1239 [View Article]
    [Google Scholar]
  44. Crombie AT, Murrell JC. Trace-gas metabolic versatility of the facultative methanotroph Methylocella silvestris . Nature 2014; 510:148–151 [View Article]
    [Google Scholar]
  45. Farhan Ul Haque M, Crombie AT, Murrell JC. Novel facultative Methylocella strains are active methane consumers at terrestrial natural gas seeps. Microbiome 2019; 7:134 [View Article]
    [Google Scholar]
  46. Bordel S, Rodríguez Y, Hakobyan A, Rodríguez E, Lebrero R et al. Genome scale metabolic modeling reveals the metabolic potential of three Type II methanotrophs of the genus Methylocystis . Metab Eng 2019; 54:191–199 [View Article]
    [Google Scholar]
  47. Wang J, Geng K, Farhan Ul Haque M, Crombie A, Street LE et al. Draft genome sequence of Methylocella silvestris TVC, a facultative methanotroph isolated from permafrost. Genome Announc 2018; 6:e00040–00018 [View Article][PubMed]
    [Google Scholar]
  48. Etiope G, Drobniak A, Schimmelmann A. Natural seepage of shale gas and the origin of “eternal flames” in the Northern Appalachian Basin, USA. Mar Petrol Geol 2013; 43:178–186 [View Article]
    [Google Scholar]
  49. Vekeman B, Kerckhof F-M, Cremers G, de Vos P, Vandamme P et al. New Methyloceanibacter diversity from North Sea sediments includes methanotroph containing solely the soluble methane monooxygenase. Environ Microbiol 2016; 18:4523–4536 [View Article]
    [Google Scholar]
  50. Vorobev AV, Baani M, Doronina NV, Brady AL, Liesack W et al. Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase. Int J Syst Evol Microbiol 2011; 61:2456–2463 [View Article]
    [Google Scholar]
  51. Takeuchi M, Katayama T, Yamagishi T, Hanada S, Tamaki H et al. Methyloceanibacter caenitepidi gen. nov., sp. nov., a facultatively methylotrophic bacterium isolated from marine sediments near a hydrothermal vent. Int J Syst Evol Microbiol 2014; 64:462–468 [View Article]
    [Google Scholar]
  52. Kang CS, Dunfield PF, Semrau JD. The origin of aerobic methanotrophy within the Proteobacteria. FEMS Microbiol Lett 2019; 366:fnz096 [View Article][PubMed]
    [Google Scholar]
  53. Conley S, Franco G, Faloona I, Blake DR, Peischl J et al. Methane emissions from the 2015 Aliso Canyon blowout in Los Angeles, CA. Science 2016; 351:1317–1320 [View Article]
    [Google Scholar]
  54. Arp DJ. Butane metabolism by butane-grown ‘Pseudomonas butanovora’. Microbiology 1999; 145:1173–1180 [View Article]
    [Google Scholar]
  55. Kox MAR, Farhan Ul Haque M, van Alen TA, Crombie AT, Jetten MSM et al. Complete genome sequence of the aerobic facultative methanotroph Methylocella tundrae strain T4. Microbiol Resour Announc 2019; 8:e00286–00219 [View Article][PubMed]
    [Google Scholar]
  56. Chen Y, Crombie A, Rahman MT, Dedysh SN, Liesack W et al. Complete genome sequence of the aerobic facultative methanotroph Methylocella silvestris BL2. J Bacteriol 2010; 192:3840–3841 [View Article]
    [Google Scholar]
  57. Kotani T, Yamamoto T, Yurimoto H, Sakai Y, Kato N. Propane monooxygenase and NAD+-dependent secondary alcohol dehydrogenase in propane metabolism by Gordonia sp. strain TY-5. J Bacteriol 2003; 185:7120–7128 [View Article]
    [Google Scholar]
  58. Furuya T, Nakao T, Kino K. Catalytic function of the mycobacterial binuclear iron monooxygenase in acetone metabolism. FEMS Microbiol Lett 2015; 362:fnv136 [View Article]
    [Google Scholar]
  59. Anthony C. The quinoprotein dehydrogenases for methanol and glucose. Arch Biochem Biophys 2004; 428:2–9 [View Article]
    [Google Scholar]
  60. Picone N, Op den Camp HJ. Role of rare earth elements in methanol oxidation. Curr Opin Chem Biol 2019; 49:39–44 [View Article]
    [Google Scholar]
  61. Pol A, Barends TRM, Dietl A, Khadem AF, Eygensteyn J et al. Rare earth metals are essential for methanotrophic life in volcanic mudpots. Environ Microbiol 2014; 16:255–264 [View Article]
    [Google Scholar]
  62. Chistoserdova L. New pieces to the lanthanide puzzle. Mol Microbiol 2019; 111:1127–1131 [View Article]
    [Google Scholar]
  63. Skovran E, Martinez-Gomez NC. Just add lanthanides. Science 2015; 348:862–863 [View Article]
    [Google Scholar]
  64. Farhan Ul Haque M, Kalidass B, Bandow N, Turpin EA, DiSpirito AA et al. Cerium regulates expression of alternative methanol dehydrogenases in Methylosinus trichosporium OB3b. Appl Environ Microbiol 2015; 81:7546–7552 [View Article][PubMed]
    [Google Scholar]
  65. Tyler G. Rare earth elements in soil and plant systems - A review. Plant Soil 2004; 267:191–206 [View Article]
    [Google Scholar]
  66. Chistoserdova L. Lanthanides: new life metals?. World J Microbiol Biot 2016; 32:1–7 [View Article]
    [Google Scholar]
  67. Huang J, Yu Z, Groom J, Cheng J-F, Tarver A et al. Rare earth element alcohol dehydrogenases widely occur among globally distributed, numerically abundant and environmentally important microbes. Isme J 2019; 13:2005–2017 [View Article][PubMed]
    [Google Scholar]
  68. Keltjens JT, Pol A, Reimann J, Op den Camp HM. PQQ-dependent methanol dehydrogenases: rare-earth elements make a difference. Appl Microbiol Biotechnol 2014; 98:6163–6183 [View Article]
    [Google Scholar]
  69. Jahn B, Pol A, Lumpe H, Barends T, Dietl A et al. Similar but not the same: first kinetic and structural analyses of a methanol dehydrogenase containing a europium ion in the active site. ChemBioChem 2018; 19:1147–1153 [View Article]
    [Google Scholar]
  70. Deng YW, Ro SY, Rosenzweig AC. Structure and function of the lanthanide-dependent methanol dehydrogenase XoxF from the methanotroph Methylomicrobium buryatense 5GB1C. J Biol Inorg Chem 2018; 23:1037–1047 [View Article][PubMed]
    [Google Scholar]
  71. Good NM, Fellner M, Demirer K, Hu J, Hausinger RP et al. Lanthanide-dependent alcohol dehydrogenases require an essential aspartate residue for metal coordination and enzymatic function. J Biol Chem 2020; 295:8272–8284 [View Article][PubMed]
    [Google Scholar]
  72. Anthony C, Williams P. The structure and mechanism of methanol dehydrogenase. Biochim Biophys Acta 2003; 1647:18–23 [View Article]
    [Google Scholar]
  73. Semrau JD, DiSpirito AA, Gu W, Yoon S. Metals and methanotrophy. Appl Environ Microbiol 2018; 84:e02289-17 [View Article][PubMed]
    [Google Scholar]
  74. Taubert M, Grob C, Howat AM, Burns OJ, Dixon JL et al. xoxF encoding an alternative methanol dehydrogenase is widespread in coastal marine environments. Environ Microbiol 2015; 17:3937–3948 [View Article]
    [Google Scholar]
  75. Krause SMB, Johnson T, Samadhi Karunaratne Y, Fu Y, Beck DAC et al. Lanthanide-dependent cross-feeding of methane-derived carbon is linked by microbial community interactions. Proc Natl Acad Sci U S A 2017; 114:358–363 [View Article][PubMed]
    [Google Scholar]
  76. Yu Z, Beck DAC, Chistoserdova L. Natural selection in synthetic communities highlights the roles of Methylococcaceae and Methylophilaceae and suggests differential roles for alternative methanol dehydrogenases in methane consumption. Front Microbiol 2017; 8:2392 [View Article][PubMed]
    [Google Scholar]
  77. Wang L, Suganuma S, Hibino A, Mitsui R, Tani A et al. Lanthanide-dependent methanol dehydrogenase from the legume symbiotic nitrogen-fixing bacterium Bradyrhizobium diazoefficiens strain USDA110. Enzyme Microb Technol 2019; 130:109371 [View Article]
    [Google Scholar]
  78. Wilson SM, Gleisten MP, Donohue TJ. Identification of proteins involved in formaldehyde metabolism by Rhodobacter sphaeroides . Microbiology 2008; 154:296–305 [View Article]
    [Google Scholar]
  79. Kato S, Takashino M, Igarashi K, Kitagawa W. Isolation and genomic characterization of a proteobacterial methanotroph requiring lanthanides. Microbes Environ 2020; 35:ME19128n/a [View Article][PubMed]
    [Google Scholar]
  80. Wegner C-E, Gorniak L, Riedel S, Westermann M, Küsel K. Lanthanide-dependent methylotrophs of the family Beijerinckiaceae: physiological and genomic insights. Appl Environ Microbiol 2019; 86:e01830-19 [View Article][PubMed]
    [Google Scholar]
  81. Good NM, Vu HN, Suriano CJ, Subuyuj GA, Skovran E et al. Pyrroloquinoline quinone-containing ethanol dehydrogenase in Methylobacterium extorquens AM1 extends lanthanide-dependent metabolism to multi-carbon substrates. J Bacteriol 2016; 198:3109–3118 [View Article][PubMed]
    [Google Scholar]
  82. Wehrmann M, Billard P, Martin-Meriadec A, Zegeye A, Klebensberger J. Functional role of lanthanides in enzymatic activity and transcriptional regulation of pyrroloquinoline quinone-dependent alcohol dehydrogenases in Pseudomonas putida KT2440. MBio 2017; 8:e00570-17 [View Article]
    [Google Scholar]
  83. Dunstan PM, Anthony C, Drabble WT. Microbial metabolism of C1 and C2 compounds. The involvement of glycollate in the metabolism of ethanol and of acetate by Pseudomonas AM1. Biochem J 1972; 128:99–106 [View Article]
    [Google Scholar]
  84. Vorobev A, Jagadevan S, Jain S, Anantharaman K, Dick GJ et al. Genomic and transcriptomic analyses of the facultative methanotroph Methylocystis sp. strain SB2 grown on methane or ethanol. Appl Environ Microbiol 2014; 80:3044–3052 [View Article]
    [Google Scholar]
  85. Yu Z, Zhang Q, Kraus TEC, Dahlgren RA, Anastasio C et al. Contribution of amino compounds to dissolved organic nitrogen in forest soils. Biogeochemistry 2002; 61:173–198 [View Article]
    [Google Scholar]
  86. Anthony C. Biochemistry of Methylotrophs London: Academic Press; 1982
    [Google Scholar]
  87. Chen Y, Patel NA, Crombie A, Scrivens JH, Murrell JC. Bacterial flavin-containing monooxygenase is trimethylamine monooxygenase. Proc Natl Acad Sci U S A 2011; 108:17791–17796 [View Article]
    [Google Scholar]
  88. Chen Y, Scanlan J, Song L, Crombie A, Rahman MT et al. γ-Glutamylmethylamide is an essential intermediate in the metabolism of methylamine by Methylocella silvestris . Appl Environ Microbiol 2010; 76:4530–4537 [View Article]
    [Google Scholar]
  89. Zhu Y, Jameson E, Parslow RA, Lidbury I, Fu T et al. Identification and characterization of trimethylamine N -oxide (TMAO) demethylase and TMAO permease in Methylocella silvestris BL2. Environ Microbiol 2014; 16:3318–3330 [View Article]
    [Google Scholar]
  90. Horken KM, Tabita FR. Closely related form I ribulose bisphosphate carboxylase/oxygenase molecules that possess different CO2/O2 substrate specificities. Arch Biochem Biophys 1999; 361:183–194 [View Article]
    [Google Scholar]
  91. Dedysh SN, Smirnova KV, Khmelenina VN, Suzina NE, Liesack W et al. Methylotrophic autotrophy in Beijerinckia mobilis . J Bacteriol 2005; 187:3884–3888 [View Article]
    [Google Scholar]
  92. Tamas I, Smirnova AV, He Z, Dunfield PF. The (d)evolution of methanotrophy in the Beijerinckiaceae--a comparative genomics analysis. Isme J 2014; 8:369–382 [View Article][PubMed]
    [Google Scholar]
  93. Ward N, Larsen Øivind, Sakwa J, Bruseth L, Khouri H et al. Genomic insights into methanotrophy: the complete genome sequence of Methylococcus capsulatus (Bath). PLoS Biol 2004; 2:e303 [View Article]
    [Google Scholar]
  94. Gimenez R, Nuñez María Felisa, Badia J, Aguilar J, Baldoma L. The gene yjcG, cotranscribed with the gene acs, encodes an acetate permease in Escherichia coli . J Bacteriol 2003; 185:6448–6455 [View Article]
    [Google Scholar]
  95. Schneider K, Peyraud R, Kiefer P, Christen P, Delmotte N et al. The ethylmalonyl-CoA pathway is used in place of the glyoxylate cycle by Methylobacterium extorquens AM1 during growth on acetate. J Biol Chem 2012; 287:757–766 [View Article]
    [Google Scholar]
  96. Han D, Dedysh SN, Liesack W. Unusual genomic traits suggest Methylocystis bryophila S285 to be well adapted for life in peatlands. Genome Biol Evol 2018; 10:623–628 [View Article][PubMed]
    [Google Scholar]
  97. Kornberg HL, Krebs HA. Synthesis of cell constituents from C2-units by a modified tricarboxylic acid cycle. Nature 1957; 179:988–991 [View Article]
    [Google Scholar]
  98. Anthony C. How half a century of research was required to understand bacterial growth on C1 and C2 compounds; the story of the serine cycle and the ethylmalonyl-CoA pathway. Sci Prog 2011; 94:109–137 [View Article]
    [Google Scholar]
  99. Crombie A, Murrell JC. Development of a system for genetic manipulation of the facultative methanotroph Methylocella silvestris BL2. Methods Enzymol 2011; 495:119–133
    [Google Scholar]
  100. Bordel S, Crombie AT, Muñoz R, Murrell JC. Genome scale metabolic model of the versatile methanotroph Methylocella silvestris . Microb Cell Fact 2020; 19:144 [View Article]
    [Google Scholar]
  101. Carere CR, Hards K, Houghton KM, Power JF, McDonald B et al. Mixotrophy drives niche expansion of verrucomicrobial methanotrophs. ISME J 2017; 11:2599–2610 [View Article]
    [Google Scholar]
  102. Ward L, Shih PM, Hemp J, Kakegawa T, Fischer WW et al. Phototrophic methane oxidation in a member of the Chloroflexi phylum. bioRxiv 2019; 531582:
    [Google Scholar]
  103. Ji M, Greening C, Vanwonterghem I, Carere CR, Bay SK et al. Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature 2017; 552:400–403 [View Article]
    [Google Scholar]
  104. Conrad R. Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev 1996; 60:609–640 [View Article][PubMed]
    [Google Scholar]
  105. Hanczár T, Csáki R, Bodrossy L, Murrell CJ, Kovács KL. Detection and localization of two hydrogenases in Methylococcus capsulatus (Bath) and their potential role in methane metabolism. Arch Microbiol 2002; 177:167–172 [View Article][PubMed]
    [Google Scholar]
  106. Chen YP, Yoch DC. Regulation of two nickel-requiring (inducible and constitutive) hydrogenases and their coupling to nitrogenase in Methylosinus trichosporium OB3b. J Bacteriol 1987; 169:4778–4783 [View Article][PubMed]
    [Google Scholar]
  107. Hakobyan A, Zhu J, Glatter T, Paczia N, Liesack W. Hydrogen utilization by Methylocystis sp. strain SC2 expands the known metabolic versatility of type IIa methanotrophs. Metab Eng 2020; 61:181–196 [View Article][PubMed]
    [Google Scholar]
  108. Piché-Choquette S, Constant P. Molecular hydrogen, a neglected key driver of soil biogeochemical processes. Appl Environ Microbiol 2019; 85:e02418-18 [View Article][PubMed]
    [Google Scholar]
  109. Mohammadi SS, Schmitz RA, Pol A, Berben T, Jetten MSM et al. The acidophilic methanotroph Methylacidimicrobium tartarophylax 4AC grows as autotroph on H2under microoxic conditions. Front Microbiol 2019; 10:2352 [View Article][PubMed]
    [Google Scholar]
  110. Greening C, Constant P, Hards K, Morales SE, Oakeshott JG et al. Atmospheric hydrogen scavenging: from enzymes to ecosystems. Appl Environ Microbiol 2015; 81:1190–1199 [View Article]
    [Google Scholar]
  111. Greening C, Berney M, Hards K, Cook GM, Conrad R. A soil actinobacterium scavenges atmospheric H2 using two membrane-associated, oxygen-dependent [NiFe] hydrogenases. Proc Natl Acad Sci U S A 2014; 111:4257–4261 [View Article][PubMed]
    [Google Scholar]
  112. Cordero PRF, Bayly K, Man Leung P, Huang C, Islam ZF et al. Atmospheric carbon monoxide oxidation is a widespread mechanism supporting microbial survival. ISME J 2019; 13:2868–2881 [View Article][PubMed]
    [Google Scholar]
  113. Garcia-Chaves MC, Cottrell MT, Kirchman DL, Ruiz-González C, Del Giorgio PA. Single-cell activity of freshwater aerobic anoxygenic phototrophic bacteria and their contribution to biomass production. ISME J 2016; 10:1579–1588 [View Article][PubMed]
    [Google Scholar]
  114. Yurkov VV, Beatty JT. Aerobic anoxygenic phototrophic bacteria. Microbiol Mol Biol Rev 1998; 62:695–724 [View Article][PubMed]
    [Google Scholar]
  115. Koblížek M. Ecology of aerobic anoxygenic phototrophs in aquatic environments. FEMS Microbiol Rev 2015; 39:854–870 [View Article][PubMed]
    [Google Scholar]
  116. Miroshnikov KK, Belova SE, Dedysh SN. Genomic determinants of phototrophy in methanotrophic Alphaproteobacteria. Microbiology 2019; 88:548–555 [View Article]
    [Google Scholar]
  117. Oshkin IY, Miroshnikov KK, Grouzdev DS, Dedysh SN. Pan-genome-based analysis as a framework for demarcating two closely related methanotroph genera Methylocystis and Methylosinus . Microorganisms 2020; 8:768 [View Article][PubMed]
    [Google Scholar]
  118. Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 2010; 464:543–548 [View Article][PubMed]
    [Google Scholar]
  119. Kits KD, Klotz MG, Stein LY. Methane oxidation coupled to nitrate reduction under hypoxia by the Gammaproteobacterium Methylomonas denitrificans, sp. nov. type strain FJG1. Environ Microbiol 2015; 17:3219–3232 [View Article][PubMed]
    [Google Scholar]
  120. Dam B, Dam S, Blom J, Liesack W. Genome analysis coupled with physiological studies reveals a diverse nitrogen metabolism in Methylocystis sp. strain SC2. PLoS One 2013; 8:e74767 [View Article][PubMed]
    [Google Scholar]
  121. Kits KD, Campbell DJ, Rosana AR, Stein LY. Diverse electron sources support denitrification under hypoxia in the obligate methanotroph Methylomicrobium album strain BG8. Front Microbiol 2015; 6:1072 [View Article][PubMed]
    [Google Scholar]
  122. Tanaka K, Yokoe S, Igarashi K, Takashino M, Ishikawa M et al. Extracellular electron transfer via outer membrane cytochromes in a methanotrophic bacterium Methylococcus capsulatus (Bath). Front Microbiol 2018; 9:2905 [View Article]
    [Google Scholar]
  123. Zheng Y, Wang H, Liu Y, Zhu B, Li J et al. Methane-dependent mineral reduction by aerobic methanotrophs under hypoxia. Environ Sci Tech Let 2020; 7:606–612 [View Article]
    [Google Scholar]
  124. Kalyuzhnaya MG, Yang S, Rozova ON, Smalley NE, Clubb J et al. Highly efficient methane biocatalysis revealed in a methanotrophic bacterium. Nat Commun 2013; 4:2785 [View Article][PubMed]
    [Google Scholar]
  125. Gilman A, Fu Y, Hendershott M, Chu F, Puri AW et al. Oxygen-limited metabolism in the methanotroph Methylomicrobium buryatense 5GB1C. PeerJ 2017; 5:e3945 [View Article][PubMed]
    [Google Scholar]
  126. Stein LY, Klotz MG. Nitrifying and denitrifying pathways of methanotrophic bacteria. Biochem Soc Trans 2011; 39:1826–1831 [View Article][PubMed]
    [Google Scholar]
  127. Stein LY. The long-term relationship between microbial metabolism and greenhouse gases. Trends Microbiol 2020; 28:500–511 [View Article][PubMed]
    [Google Scholar]
  128. Knief C. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Front Microbiol 2015; 6:1346 [View Article][PubMed]
    [Google Scholar]
  129. Dedysh SN. Exploring methanotroph diversity in acidic northern wetlands: molecular and cultivation-based studies. Microbiology 2009; 78:655–669 [View Article]
    [Google Scholar]
  130. Dedysh SN, Pankratov TA, Belova SE, Kulichevskaya IS, Liesack W. Phylogenetic analysis and in situ identification of bacteria community composition in an acidic Sphagnum peat bog. Appl Environ Microbiol 2006; 72:2110–2117 [View Article]
    [Google Scholar]
  131. Radajewski S, Webster G, Reay DS, Morris SA, Ineson P et al. Identification of active methylotroph populations in an acidic forest soil by stable-isotope probing. Microbiology 2002; 148:2331–2342 [View Article][PubMed]
    [Google Scholar]
  132. Chen Y, Dumont MG, McNamara NP, Chamberlain PM, Bodrossy L et al. Diversity of the active methanotrophic community in acidic peatlands as assessed by mRNA and SIP-PLFA analyses. Environ Microbiol 2008; 10:446–459 [View Article][PubMed]
    [Google Scholar]
  133. Kip N, Dutilh BE, Pan Y, Bodrossy L, Neveling K et al. Ultra-deep pyrosequencing of pmoA amplicons confirms the prevalence of Methylomonas and Methylocystis in Sphagnum mosses from a Dutch peat bog. Environ Microbiol Rep 2011; 3:667–673 [View Article][PubMed]
    [Google Scholar]
  134. Kip N, Fritz C, Langelaan ES, Pan Y, Bodrossy L et al. Methanotrophic activity and diversity in different Sphagnum magellanicum dominated habitats in the southernmost peat bogs of Patagonia. Biogeosciences 2012; 9:47–55 [View Article]
    [Google Scholar]
  135. Dedysh SN, Derakshani M, Liesack W. Detection and enumeration of methanotrophs in acidic Sphagnum peat by 16S rRNA fluorescence in situ hybridization, including the use of newly developed oligonucleotide probes for Methylocella palustris . Appl Environ Microbiol 2001; 67:4850–4857 [View Article][PubMed]
    [Google Scholar]
  136. Kolb S, Horn MA. Microbial CH4 and N2O consumption in acidic wetlands. Front Microbiol 2012; 3:78 [View Article][PubMed]
    [Google Scholar]
  137. Henckel T, Friedrich M, Conrad R. Molecular analyses of the methane-oxidizing microbial community in rice field soil by targeting the genes of the 16S rRNA, particulate methane monooxygenase, and methanol dehydrogenase. Appl Environ Microbiol 1999; 65:1980–1990 [View Article][PubMed]
    [Google Scholar]
  138. Bao Z, Okubo T, Kubota K, Kasahara Y, Tsurumaru H et al. Metaproteomic identification of diazotrophic methanotrophs and their localization in root tissues of field-grown rice plants. Appl Environ Microbiol 2014; 80:5043–5052 [View Article][PubMed]
    [Google Scholar]
  139. Horz HP, Yimga MT, Liesack W. Detection of methanotroph diversity on roots of submerged rice plants by molecular retrieval of pmoA, mmoX, mxaF, and 16S rRNA and ribosomal DNA, including pmoA-based terminal restriction fragment length polymorphism profiling. Appl Environ Microbiol 2001; 67:4177–4185 [View Article][PubMed]
    [Google Scholar]
  140. Rahman MT, Crombie A, Chen Y, Stralis-Pavese N, Bodrossy L et al. Environmental distribution and abundance of the facultative methanotroph Methylocella . ISME J 2011; 5:1061–1066 [View Article][PubMed]
    [Google Scholar]
  141. Cébron A, Bodrossy L, Chen Y, Singer AC, Thompson IP et al. Identity of active methanotrophs in landfill cover soil as revealed by DNA-stable isotope probing. FEMS Microbiol Ecol 2007; 62:12–23 [View Article][PubMed]
    [Google Scholar]
  142. Han B, Chen Y, Abell G, Jiang H, Bodrossy L et al. Diversity and activity of methanotrophs in alkaline soil from a Chinese coal mine. FEMS Microbiol Ecol 2009; 70:196–207 [View Article][PubMed]
    [Google Scholar]
  143. Putkinen A, Larmola T, Tuomivirta T, Siljanen HMP, Bodrossy L et al. Peatland succession induces a shift in the community composition of Sphagnum-associated active methanotrophs. FEMS Microbiol Ecol 2014; 88:596–611 [View Article][PubMed]
    [Google Scholar]
  144. Gupta V, Smemo KA, Yavitt JB, Basiliko N. Active methanotrophs in two contrasting North American peatland ecosystems revealed using DNA-SIP. Microb Ecol 2012; 63:438–445 [View Article][PubMed]
    [Google Scholar]
  145. Sharp CE, Martínez-Lorenzo A, Brady AL, Grasby SE, Dunfield PF. Methanotrophic bacteria in warm geothermal spring sediments identified using stable-isotope probing. FEMS Microbiol Ecol 2014; 90:92–102 [View Article][PubMed]
    [Google Scholar]
  146. Shao Y, Hatzinger PB, Streger SH, Rezes RT, Chu KH. Evaluation of methanotrophic bacterial communities capable of biodegrading trichloroethene (TCE) in acidic aquifers. Biodegradation 2019; 30:173–190 [View Article][PubMed]
    [Google Scholar]
  147. Morris SA, Radajewski S, Willison TW, Murrell JC. Identification of the functionally active methanotroph population in a peat soil microcosm by stable-isotope probing. Appl Environ Microbiol 2002; 68:1446–1453 [View Article]
    [Google Scholar]
  148. Strobel BW. Influence of vegetation on low-molecular-weight carboxylic acids in soil solution—a review. Geoderma 2001; 99:169–198 [View Article]
    [Google Scholar]
  149. Vranova V, Rejsek K, Formanek P, Aliphatic FP. Aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil: a review. Sci World J 2013524239 [View Article][PubMed]
    [Google Scholar]
  150. Hines ME, Duddleston KN, Kiene RP. Carbon flow to acetate and C1 compounds in northern wetlands. Geophys Res Lett 2001; 28:4251–4254 [View Article]
    [Google Scholar]
  151. Wieczorek AS, Drake HL, Kolb S. Organic acids and ethanol inhibit the oxidation of methane by mire methanotrophs. FEMS Microbiol Ecol 2011; 77:28–39 [View Article][PubMed]
    [Google Scholar]
  152. Rahman MT, Crombie A, Moussard H, Chen Y, Murrell JC. Acetate repression of methane oxidation by supplemental Methylocella silvestris in a peat soil microcosm. Appl Environ Microbiol 2011; 77:4234–4236 [View Article]
    [Google Scholar]
  153. Leng L, Chang J, Geng K, Lu Y, Ma K. Uncultivated Methylocystis species in paddy soil include facultative methanotrophs that utilize acetate. Microb Ecol 2015; 70:88–96 [View Article][PubMed]
    [Google Scholar]
  154. Yoon S, Im J, Bandow N, Dispirito AA, Semrau JD. Constitutive expression of pMMO by Methylocystis strain SB2 when grown on multi-carbon substrates: implications for biodegradation of chlorinated ethenes. Environ Microbiol Rep 2011; 3:182–188 [View Article][PubMed]
    [Google Scholar]
  155. Pratscher J, Dumont MG, Conrad R. Assimilation of acetate by the putative atmospheric methane oxidizers belonging to the USCα clade. Environ Microbiol 2011; 13:2692–2701 [View Article][PubMed]
    [Google Scholar]
  156. West AE, Schmidt SK. Acetate stimulates atmospheric CH4 oxidation by an alpine tundra soil. Soil Biol Biochem 1999; 31:1649–1655 [View Article]
    [Google Scholar]
  157. Sullivan BW, Selmants PC, Hart SC. Does dissolved organic carbon regulate biological methane oxidation in semiarid soils?. Glob Chang Biol 2013; 19:2149–2157 [View Article][PubMed]
    [Google Scholar]
  158. Sullivan BW, Selmants PC, Hart SC. What is the relationship between soil methane oxidation and other C compounds?. Glob Chang Biol 2014; 20:2381–2382 [View Article][PubMed]
    [Google Scholar]
  159. Theisen AR, Ali MH, Radajewski S, Dumont MG, Dunfield PF et al. Regulation of methane oxidation in the facultative methanotroph Methylocella silvestris BL2. Mol Microbiol 2005; 58:682–692 [View Article][PubMed]
    [Google Scholar]
  160. Smirnova AV, Dunfield PF. Differential transcriptional activation of genes encoding soluble methane monooxygenase in a facultative versus an obligate methanotroph. Microorganisms 2018; 6:20 [View Article][PubMed]
    [Google Scholar]
  161. Farhan Ul Haque M, Crombie AT, Ensminger SA, Baciu C, Murrell JC. Facultative methanotrophs are abundant at terrestrial natural gas seeps. Microbiome 2018; 6:118 [View Article][PubMed]
    [Google Scholar]
  162. Dalton H, Stirling DI, Quayle JR, Higgins IJ, Bull AT. Co-metabolism. Philos Trans R Soc Lond B Biol Sci 1982; 297:481–496 [View Article][PubMed]
    [Google Scholar]
  163. Semrau JD. Bioremediation via methanotrophy: overview of recent findings and suggestions for future research. Front Microbiol 2011; 2:209 [View Article][PubMed]
    [Google Scholar]
  164. Muenmee S, Chiemchaisri W, Chiemchaisri C. Enhancement of biodegradation of plastic wastes via methane oxidation in semi-aerobic landfill. Int Biodeterior Biodegradation 2016; 113:244–255 [View Article]
    [Google Scholar]
  165. Muenmee S, Chiemchaisri W, Chiemchaisri C. Microbial consortium involving biological methane oxidation in relation to the biodegradation of waste plastics in a solid waste disposal open dump site. Int Biodeterior Biodegradation 2015; 102:172–181 [View Article]
    [Google Scholar]
  166. Smith TJ, Dalton H, Vazquez-Duhalt R, Quintero-Ramirez R. Biocatalysis by methane monooxygenase and its implications for the petroleum industry. Petroleum Biotechnology - Developments and Perspectives Amsterdam: Elsevier; 2004 pp 177–192
    [Google Scholar]
  167. Baba T, Miyaji A. Application of biocatalysts for the production of methanol from methane. Catalysis and the Mechanism of Methane Conversion to Chemicals Singapore: Springer Singapore; 2020 pp 73–101
    [Google Scholar]
  168. Patel SKS, Kumar V, Mardina P, Li J, Lestari R et al. Methanol production from simulated biogas mixtures by co-immobilized Methylomonas methanica and Methylocella tundrae . Bioresour Technol 2018; 263:25–32 [View Article][PubMed]
    [Google Scholar]
  169. Ge X, Yang L, Sheets JP, Yu Z, Li Y. Biological conversion of methane to liquid fuels: status and opportunities. Biotechnol Adv 2014; 32:1460–1475 [View Article][PubMed]
    [Google Scholar]
  170. Jiang H, Chen Y, Jiang P, Zhang C, Smith TJ et al. Methanotrophs: multifunctional bacteria with promising applications in environmental bioengineering. Biochem Eng J 2010; 49:277–288 [View Article]
    [Google Scholar]
  171. Stanley SH, Dalton H. The biotransformation of propylene to propylene oxide by Methylococcus capsulatus (Bath): 1. Biocatalysis 1992; 6:163–175 [View Article]
    [Google Scholar]
  172. Stanley SH, Richards Anthony O'L, Suzuki M, Dalton H. The biotransformation of propylene to propylene oxide by Methylococcus capsulatus (Bath): 2. A study of the biocatalyst stability. Biocatalysis 1992; 6:177–190 [View Article]
    [Google Scholar]
  173. Nielsen AK, Gerdes K, Murrell JC. Copper-dependent reciprocal transcriptional regulation of methane monooxygenase genes in Methylococcus capsulatus and Methylosinus trichosporium . Mol Microbiol 1997; 25:399–409 [View Article][PubMed]
    [Google Scholar]
  174. Söhngen N. Über bakterien, welche methan ALS kohlenstoffnahrung und energiequelle gebrauchen. Zentrabl Bakteriol Parasitenk Infektionskr 1906; 15:513–517
    [Google Scholar]
  175. Berry D, Mader E, Lee TK, Woebken D, Wang Y et al. Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells. Proc Natl Acad Sci U S A 2015; 112:E194–E203 [View Article][PubMed]
    [Google Scholar]
  176. Huang WE, Stoecker K, Griffiths R, Newbold L, Daims H et al. Raman-FISH: combining stable-isotope Raman spectroscopy and fluorescence in situ hybridization for the single cell analysis of identity and function. Environ Microbiol 2007; 9:1878–1889 [View Article][PubMed]
    [Google Scholar]
  177. Dumont MG, Hernández García M. (editors) Stable Isotope Probing; Methods and Protocols Totowa, NJ US: Humana Press; 2019
    [Google Scholar]
  178. Vartoukian SR, Palmer RM, Wade WG. Strategies for culture of ‘unculturable’ bacteria. FEMS Microbiol Lett 2010; 309:1–7 [View Article][PubMed]
    [Google Scholar]
  179. Gao L, Mastalerz M, Schimmelmann A, Rodvelt G et al. The origin of coalbed methane. In Thakur P, Schatzel SJ, Aminian K, Mosser MH. (editors) Coal Bed Methane, 2nd ed. Amsterdam: Elsevier; 2020 pp 3–34
    [Google Scholar]
  180. Meyer J, Haubold R, Heyer J, Böckel W. Contribution to the taxonomy of methanotrophic bacteria: correlation between membrane type and GC-value. J Basic Microbiol 1986; 26:155–160 [View Article]
    [Google Scholar]
  181. Dedysh SN, Belova SE, Bodelier PLE, Smirnova KV, Khmelenina VN et al. Methylocystis heyeri sp. nov., a novel type II methanotrophic bacterium possessing ‘signature’ fatty acids of type I methanotrophs. Int J Syst Evol Microbiol 2007; 57:472–479 [View Article]
    [Google Scholar]
  182. Lindner AS, Pacheco A, Aldrich HC, Costello Staniec A, Uz I et al. Methylocystis hirsuta sp. nov., a novel methanotroph isolated from a groundwater aquifer. Int J Syst Evol Microbiol 2007; 57:1891–1900 [View Article]
    [Google Scholar]
  183. Kumar S, Stecher G, Tamura K. mega7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  184. Gertz EM, Yu Y-K, Agarwala R, Schäffer AA, Altschul SF. Composition-based statistics and translated nucleotide searches: improving the TBLASTN module of blast . BMC Biol 2006; 4:41 [View Article][PubMed]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.000977
Loading
/content/journal/micro/10.1099/mic.0.000977
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error