1887

Abstract

Antibiotic resistance in is a serious concern in healthcare systems. Among the determinants of antibiotic resistance in , efflux pumps belonging to the resistance–nodulation–division (RND) family confer resistance to a broad range of antibacterial compounds. The MexXY efflux system is widely overexpressed in isolates from cystic fibrosis (CF) patients. MexXY can form functional complexes with two different outer membrane factors (OMFs), OprA and OprM. In this study, using state-of-the-art genetic tools, the substrate specificities of MexXY–OprA and MexXY–OprM complexes were determined. Our results show, for the first time, that the substrate profile of the MexXY system from PA7 can vary depending on which OM factor (OprM or OprA) it complexes with. While both MexXY–OprA and MexXY–OprM complexes are capable of effluxing aminoglycosides, the bi-anionic β-lactam molecules carbenicillin and sulbenicillin were found to only be the substrate of MexXY–OprA. Our study therefore shows that by partnering with different OMF proteins MexY can expand its substrate profile.

Funding
This study was supported by the:
  • Ayush kumar , Canadian Institute of Health Research
  • Ayush kumar , Cystic Fibrosis Foundation
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000971
2020-09-10
2020-12-01
Loading full text...

Full text loading...

References

  1. Driscoll JA, Brody SL, Kollef MH. The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs 2007; 67:351–368 [CrossRef][PubMed]
    [Google Scholar]
  2. Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 2009; 22:582–610 [CrossRef][PubMed]
    [Google Scholar]
  3. Govan JR, Deretic V. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia . Microbiol Rev 1996; 60:539–574 [CrossRef][PubMed]
    [Google Scholar]
  4. Martin LW, Robson CL, Watts AM, Gray AR, Wainwright CE et al. Expression of Pseudomonas aeruginosa antibiotic resistance genes varies greatly during infections in cystic fibrosis patients. Antimicrob Agents Chemother 2018; 62:e01789–01718 [CrossRef][PubMed]
    [Google Scholar]
  5. World Health Organization 2017; WHO publishes list of bacteria for which new antibiotics are urgently needed. http://www.who.int/mediacentre/news/releases/2017/bacteria-antibiotics-needed/en/
  6. Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 2018; 18:318–327 [CrossRef][PubMed]
    [Google Scholar]
  7. Li X-Z, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 2015; 28:337–418 [CrossRef][PubMed]
    [Google Scholar]
  8. Spengler G, Kincses A, Gajdács M, Amaral L. New roads leading to old destinations: efflux pumps as targets to reverse multidrug resistance in bacteria. Molecules 2017; 22:468 [CrossRef]
    [Google Scholar]
  9. Daury L, Orange F, Taveau J-C, Verchère A, Monlezun L et al. Tripartite assembly of RND multidrug efflux pumps. Nat Commun 2016; 7:10731 [CrossRef][PubMed]
    [Google Scholar]
  10. Morita Y, Tomida J, Kawamura Y. MexXY multidrug efflux system of Pseudomonas aeruginosa . Front Microbiol 2012a; 3:408 [CrossRef][PubMed]
    [Google Scholar]
  11. Singh M, Yau YCW, Wang S, Waters V, Kumar A. MexXY efflux pump overexpression and aminoglycoside resistance in cystic fibrosis isolates of Pseudomonas aeruginosa from chronic infections. Can J Microbiol 2017; 63:929–938 [CrossRef][PubMed]
    [Google Scholar]
  12. Prickett MH, Hauser AR, McColley SA, Cullina J, Potter E et al. Aminoglycoside resistance of Pseudomonas aeruginosa in cystic fibrosis results from convergent evolution in the mexZ gene. Thorax 2017; 72:40–47 [CrossRef][PubMed]
    [Google Scholar]
  13. Muller C, Plésiat P, Jeannot K. A two-component regulatory system interconnects resistance to polymyxins, aminoglycosides, fluoroquinolones, and β-lactams in Pseudomonas aeruginosa . Antimicrob Agents Chemother 2011; 55:1211–1221 [CrossRef][PubMed]
    [Google Scholar]
  14. Lau CH-F, Krahn T, Gilmour C, Mullen E, Poole K. AmgRS-mediated envelope stress-inducible expression of the mexXY multidrug efflux operon of Pseudomonas aeruginosa . Microbiologyopen 2015; 4:121–135 [CrossRef][PubMed]
    [Google Scholar]
  15. Hay T, Fraud S, Lau CH-F, Gilmour C, Poole K. Antibiotic inducibility of the mexXY multidrug efflux operon of Pseudomonas aeruginosa: involvement of the MexZ anti-repressor ArmZ. PLoS One 2013; 8:e56858 [CrossRef][PubMed]
    [Google Scholar]
  16. Jeannot K, Sobel ML, El Garch F, Poole K, Plésiat P. Induction of the MexXY efflux pump in Pseudomonas aeruginosa is dependent on drug-ribosome interaction. J Bacteriol 2005; 187:5341–5346 [CrossRef][PubMed]
    [Google Scholar]
  17. Poole K. Stress responses as determinants of antimicrobial resistance in Pseudomonas aeruginosa: multidrug efflux and more. Can J Microbiol 2014; 60:783–791 [CrossRef][PubMed]
    [Google Scholar]
  18. Guénard S, Muller C, Monlezun L, Benas P, Broutin I et al. Multiple mutations lead to MexXY-OprM-dependent aminoglycoside resistance in clinical strains of Pseudomonas aeruginosa . Antimicrob Agents Chemother 2014; 58:221–228 [CrossRef][PubMed]
    [Google Scholar]
  19. Ciofu O, Riis B, Pressler T, Poulsen HE, Høiby N. Occurrence of hypermutable Pseudomonas aeruginosa in cystic fibrosis patients is associated with the oxidative stress caused by chronic lung inflammation. Antimicrob Agents Chemother 2005; 49:2276–2282 [CrossRef][PubMed]
    [Google Scholar]
  20. Mine T, Morita Y, Kataoka A, Mizushima T, Tsuchiya T. Expression in Escherichia coli of a new multidrug efflux pump, MexXY, from Pseudomonas aeruginosa . Antimicrob Agents Chemother 1999; 43:415–417 [CrossRef][PubMed]
    [Google Scholar]
  21. Morita Y, Kimura N, Mima T, Mizushima T, Tsuchiya T. Roles of MexXY- and MexAB-multidrug efflux pumps in intrinsic multidrug resistance of Pseudomonas aeruginosa PAO1. J Gen Appl Microbiol 2001; 47:27–32 [CrossRef][PubMed]
    [Google Scholar]
  22. Morita Y, Tomida J, Kawamura Y. Primary mechanisms mediating aminoglycoside resistance in the multidrug-resistant Pseudomonas aeruginosa clinical isolate PA7. Microbiology 2012b; 158:1071–1083 [CrossRef][PubMed]
    [Google Scholar]
  23. Chuanchuen R, Beinlich K, Hoang TT, Becher A, Karkhoff-Schweizer RR et al. Cross-resistance between triclosan and antibiotics in Pseudomonas aeruginosa is mediated by multidrug efflux pumps: exposure of a susceptible mutant strain to triclosan selects nfxB mutants overexpressing MexCD-OprJ. Antimicrob Agents Chemother 2001; 45:428–432 [CrossRef][PubMed]
    [Google Scholar]
  24. Choi K-H, Gaynor JB, White KG, Lopez C, Bosio CM et al. A Tn7-based broad-range bacterial cloning and expression system. Nat Methods 2005; 2:443–448 [CrossRef][PubMed]
    [Google Scholar]
  25. Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ, Schweizer HP. A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 1998; 212:77–86 [CrossRef][PubMed]
    [Google Scholar]
  26. Schweizer HP. The agmR gene, an environmentally responsive gene, complements defective glpR, which encodes the putative activator for glycerol metabolism in Pseudomonas aeruginosa . J Bacteriol 1991; 173:6798–6806 [CrossRef][PubMed]
    [Google Scholar]
  27. Choi K-H, Schweizer HP. An improved method for rapid generation of unmarked Pseudomonas aeruginosa deletion mutants. BMC Microbiol 2005; 5:30 [CrossRef][PubMed]
    [Google Scholar]
  28. Kumar A, Chua K-L, Schweizer HP. Method for regulated expression of single-copy efflux pump genes in a surrogate Pseudomonas aeruginosa strain: identification of the BpeEF-OprC chloramphenicol and trimethoprim efflux pump of Burkholderia pseudomallei 1026b. Antimicrob Agents Chemother 2006; 50:3460–3463 [CrossRef][PubMed]
    [Google Scholar]
  29. Choi K-H, Kumar A, Schweizer HP. A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: application for DNA fragment transfer between chromosomes and plasmid transformation. J Microbiol Methods 2006; 64:391–397 [CrossRef][PubMed]
    [Google Scholar]
  30. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S et al. Primer-blast: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 2012; 13:134 [CrossRef][PubMed]
    [Google Scholar]
  31. Fernando D, Kumar A. Growth phase-dependent expression of RND efflux pump- and outer membrane porin-encoding genes in Acinetobacter baumannii ATCC 19606. J Antimicrob Chemother 2012; 67:569–572 [CrossRef][PubMed]
    [Google Scholar]
  32. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001; 29:e4545 [CrossRef][PubMed]
    [Google Scholar]
  33. Poole K, Gilmour C, Farha MA, Parkins MD, Klinoski R et al. Meropenem potentiation of aminoglycoside activity against Pseudomonas aeruginosa: involvement of the MexXY-OprM multidrug efflux system. J Antimicrob Chemother 2018; 73:1247–1255 [CrossRef][PubMed]
    [Google Scholar]
  34. Clinical and Laboratory Standards Institute M100-27. Performance Standards for Antimicrobial Susceptibility Testing, 27 ed. Wayne, PA: Clinical and Laboratory Standards Institute; 2017
    [Google Scholar]
  35. Cortez-Cordova J, Kumar A. Activity of the efflux pump inhibitor phenylalanine-arginine β-naphthylamide against the AdeFGH pump of Acinetobacter baumannii . Int J Antimicrob Agents 2011; 37:420–424 [CrossRef][PubMed]
    [Google Scholar]
  36. Fyfe C, Sutcliffe JA, Grossman TH. Development and characterization of a Pseudomonas aeruginosa in vitro coupled transcription-translation assay system for evaluation of translation inhibitors. J Microbiol Methods 2012; 90:256–261 [CrossRef][PubMed]
    [Google Scholar]
  37. Stone MRL, Masi M, Phetsang W, Pagès J-M, Cooper MA et al. Fluoroquinolone-derived fluorescent probes for studies of bacterial penetration and efflux. Medchemcomm 2019; 10:901–906 [CrossRef][PubMed]
    [Google Scholar]
  38. Choi K-H, Trunck LA, Kumar A, Mima T, Karkhoff-Schweizer R et al. Genetic tools for Pseudomonas . In Cornelis P. editor Pseudomonas: Genomic and Molecular Biology Norfolk, UK: Caister Academic Press; 2008 pp 65–86
    [Google Scholar]
  39. Baugh S, Ekanayaka AS, Piddock LJV, Webber MA. Loss of or inhibition of all multidrug resistance efflux pumps of Salmonella enterica serovar Typhimurium results in impaired ability to form a biofilm. J Antimicrob Chemother 2012; 67:2409–2417 [CrossRef][PubMed]
    [Google Scholar]
  40. Schweizer HP. Intrinsic resistance to inhibitors of fatty acid biosynthesis in Pseudomonas aeruginosa is due to efflux: application of a novel technique for generation of unmarked chromosomal mutations for the study of efflux systems. Antimicrob Agents Chemother 1998; 42:394–398 [CrossRef][PubMed]
    [Google Scholar]
  41. Chuanchuen R, Narasaki CT, Schweizer HP. The MexJK efflux pump of Pseudomonas aeruginosa requires OprM for antibiotic efflux but not for efflux of triclosan. J Bacteriol 2002; 184:5036–5044 [CrossRef][PubMed]
    [Google Scholar]
  42. Blair JMA, Piddock LJV. How to measure export via bacterial multidrug resistance efflux pumps. mBio 2016; 7:e00840-16 [CrossRef][PubMed]
    [Google Scholar]
  43. Chuanchuen R, Murata T, Gotoh N, Schweizer HP. Substrate-dependent utilization of OprM or OpmH by the Pseudomonas aeruginosa MexJK efflux pump. Antimicrob Agents Chemother 2005; 49:2133–2136 [CrossRef][PubMed]
    [Google Scholar]
  44. Jo JTH, Brinkman FSL, Hancock REW. Aminoglycoside efflux in Pseudomonas aeruginosa: involvement of novel outer membrane proteins. Antimicrob Agents Chemother 2003; 47:1101–1111 [CrossRef][PubMed]
    [Google Scholar]
  45. Chuanchuen R, Wannaprasat W, Schweizer HP. Functional characterization of MexXY and OpmG in aminoglycoside efflux in Pseudomonas aeruginosa . Southeast Asian J Trop Med Public Health 2008; 39:115–122[PubMed]
    [Google Scholar]
  46. Kobylka J, Kuth MS, Müller RT, Geertsma ER, Pos KM. AcrB: a mean, keen, drug efflux machine. Ann N Y Acad Sci 2020; 1459:38–68 [CrossRef][PubMed]
    [Google Scholar]
  47. Masuda N, Sakagawa E, Ohya S, Gotoh N, Tsujimoto H et al. Substrate specificities of MexAB-OprM, MexCD-OprJ and MexXY-OprM efflux pumps in Pseudomonas aeruginosa . Antimicrob Agents Chemother 2000; 44:3322–3327 [CrossRef][PubMed]
    [Google Scholar]
  48. Rosenberg EY, Ma D, Nikaido H. AcrD of Escherichia coli is an aminoglycoside efflux pump. J Bacteriol 2000; 182:1754–1756 [CrossRef][PubMed]
    [Google Scholar]
  49. Smith PW, Zuccotto F, Bates RH, Martinez-Martinez MS, Read KD et al. Pharmacokinetics of β-lactam antibiotics: clues from the past to help discover long-acting oral drugs in the future. ACS Infect Dis 2018; 4:1439–1447 [CrossRef][PubMed]
    [Google Scholar]
  50. Kobayashi N, Tamura N, van Veen HW, Yamaguchi A, Murakami S. β-Lactam selectivity of multidrug transporters AcrB and AcrD resides in the proximal binding pocket. J Biol Chem 2014; 289:10680–10690 [CrossRef][PubMed]
    [Google Scholar]
  51. Roy PH, Tetu SG, Larouche A, Elbourne L, Tremblay S et al. Complete genome sequence of the multiresistant taxonomic outlier Pseudomonas aeruginosa PA7. PLoS One 2010; 5:e8842 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000971
Loading
/content/journal/micro/10.1099/mic.0.000971
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error