1887
Preview this article:
Zoom in
Zoomout

Microbial Musings – August 2020, Page 1 of 1

| /docserver/preview/fulltext/micro/166/8/680_micro000969-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000969
2020-08-26
2021-03-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/166/8/680.html?itemId=/content/journal/micro/10.1099/mic.0.000969&mimeType=html&fmt=ahah

References

  1. Prudence SMM, Addington E, Castaño-Espriu L, Mark DR, Pintor-Escobar L et al. Advances in actinomycete research: an ActinoBase review of 2019. Microbiology 2020micro000944. [CrossRef][PubMed]
    [Google Scholar]
  2. Rezwan M, Grau T, Tschumi A, Sander P. Lipoprotein synthesis in mycobacteria. Microbiology 2007; 153:652–658 [CrossRef][PubMed]
    [Google Scholar]
  3. Thompson BJ, Widdick DA, Hicks MG, Chandra G, Sutcliffe IC et al. Investigating lipoprotein biogenesis and function in the model Gram-positive bacterium Streptomyces coelicolor. Mol Microbiol 2010; 77:no [CrossRef][PubMed]
    [Google Scholar]
  4. Dautin N, Argentini M, Mohiman N, Labarre C, Cornu D et al. Role of the unique, non-essential phosphatidylglycerol::prolipoprotein diacylglyceryl transferase (Lgt) in Corynebacterium glutamicum . Microbiology 2020 03 Jun 2020 [CrossRef][PubMed]
    [Google Scholar]
  5. Widdick DA, Hicks MG, Thompson BJ, Tschumi A, Chandra G et al. Dissecting the complete lipoprotein biogenesis pathway in Streptomyces scabies. Mol Microbiol 2011; 80:1395–1412 [CrossRef][PubMed]
    [Google Scholar]
  6. Tschumi A, Grau T, Albrecht D, Rezwan M, Antelmann H et al. Functional analyses of mycobacterial lipoprotein diacylglyceryl transferase and comparative secretome analysis of a mycobacterial lgt mutant. J Bacteriol 2012; 194:3938–3949 [CrossRef][PubMed]
    [Google Scholar]
  7. Henrich A, Kuhlmann N, Eck AW, Krämer R, Seibold GM. Maltose uptake by the novel ABC transport system MusEFGK2I causes increased expression of ptsG in Corynebacterium glutamicum. J Bacteriol 2013; 195:2573–2584 [CrossRef][PubMed]
    [Google Scholar]
  8. Koza A, Jerdan R, Cameron S, Spiers AJ. Three biofilm types produced by a model pseudomonad are differentiated by structural characteristics and fitness advantage. Microbiology 2020 10 Jun 2020 [CrossRef][PubMed]
    [Google Scholar]
  9. Rainey PB, Travisano M. Adaptive radiation in a heterogeneous environment. Nature 1998; 394:69–72 [CrossRef][PubMed]
    [Google Scholar]
  10. Spiers AJ, Kahn SG, Bohannon J, Travisano M, Rainey PB. Adaptive divergence in experimental populations of Pseudomonas fluorescens I. Genetic and phenotypic bases of wrinkly spreader fitness. Genetics 2002; 161:33–46
    [Google Scholar]
  11. Lind PA, Libby E, Herzog J, Rainey PB. Predicting mutational routes to new adaptive phenotypes. elife 2019; 8:e38822 08 01 2019 [CrossRef][PubMed]
    [Google Scholar]
  12. Pezzoni M, Pizarro RA, Costa CS. Role of quorum sensing in UVA-induced biofilm formation in Pseudomonas aeruginosa . Microbiology 2020 04 Jun 2020 [CrossRef][PubMed]
    [Google Scholar]
  13. Blondel MO, Favre A. tRNAPhe and tRNAPro are the near-ultraviolet molecular targets triggering the growth delay effect. Biochem Biophys Res Commun 1988; 150:979–986 [CrossRef][PubMed]
    [Google Scholar]
  14. Gurney J, Azimi S, Brown SP, Diggle SP. Combinatorial quorum sensing in Pseudomonas aeruginosa allows for novel cheating strategies. Microbiology 2020 08 Jun 2020 [CrossRef][PubMed]
    [Google Scholar]
  15. Diggle SP, Griffin AS, Campbell GS, West SA. Cooperation and conflict in quorum-sensing bacterial populations. Nature 2007; 450:411–414 [CrossRef][PubMed]
    [Google Scholar]
  16. Martin KH, Borlee GI, Wheat WH, Jackson M, Borlee BR. Busting biofilms: free-living amoebae disrupt preformed methicillin-resistant Staphylococcus aureus (MRSA) and Mycobacterium bovis biofilms. Microbiology 2020 27 May 2020 [CrossRef][PubMed]
    [Google Scholar]
  17. Olofsson A, Nygård Skalman L, Obi I, Lundmark R, Arnqvist A. Uptake of Helicobacter pylori vesicles is facilitated by clathrin-dependent and clathrin-independent endocytic pathways. mBio 2014; 5:e00979-14 [CrossRef][PubMed]
    [Google Scholar]
  18. Lekmeechai S, Su Y-C, Brant M, Alvarado-Kristensson M, Vallström A et al. Helicobacter pylori outer membrane vesicles protect the pathogen from reactive oxygen species of the respiratory burst. Front Microbiol 2018; 9:9 [CrossRef][PubMed]
    [Google Scholar]
  19. Olofsson A, Vallström A, Petzold K, Tegtmeyer N, Schleucher J et al. Biochemical and functional characterization of Helicobacter pylori vesicles. Mol Microbiol 2010; 77:1539–1555 [CrossRef][PubMed]
    [Google Scholar]
  20. Andrade-Oliveira AL, Rossi CC, Souza-Silva T, Giambiagi-deMarval M. Staphylococcus nepalensis, a commensal of the oral microbiota of domestic cats, is a reservoir of transferrable antimicrobial resistance. Microbiology 2020micro000940 [CrossRef][PubMed]
    [Google Scholar]
  21. Rossi CC, Pereira MF, Giambiagi-deMarval M. Underrated Staphylococcus species and their role in antimicrobial resistance spreading. Genet Mol Biol 2020; 43:e20190065 [CrossRef][PubMed]
    [Google Scholar]
  22. Kloos WE, Schleifer KH. Isolation and characterization of Staphylococci from human skin II. descriptions of four new species: Staphylococcus warneri, Staphylococcus capitis, Staphylococcus hominis, and Staphylococcus simulans. Int J Syst Bacteriol 1975; 25:62–79 [CrossRef]
    [Google Scholar]
  23. Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol 2011; 9:244–253 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000969
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error