1887

Abstract

The intracellular pathogen . Typhimurium is a leading cause of foodborne illness across the world and is known to rely on a range of virulence factors to colonize the human host and cause disease. The gene coding for one such factor, , was determined to be upregulated upon macrophage entry and its disruption reduces survival in the macrophage. In this study we characterize the STM3169 protein, which forms the substrate binding protein (SBP) of an uncharacterized tripartite ATP-independent periplasmic (TRAP) transporter. Genome context analysis of the genes encoding this system in related bacteria suggests a function in sugar acid transport. We demonstrate that purified STM3169 binds -glucuronic acid with high affinity and specificity. . Typhimurium LT2 can use this sugar acid as a sole carbon source and the genes for a probable catabolic pathway are present in the genome. As this gene was previously implicated in macrophage survival, it suggests a role for -glucuronate as an important carbon source for . Typhimurium in this environment.

Funding
This study was supported by the:
  • Reyme Herman , Biotechnology and Biological Sciences Research Council , (Award BB/N01040X/1)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000967
2020-09-07
2020-11-30
Loading full text...

Full text loading...

/deliver/fulltext/micro/166/10/981.html?itemId=/content/journal/micro/10.1099/mic.0.000967&mimeType=html&fmt=ahah

References

  1. WHO Salmonella (Non-Typhoidal). World Health Organization; 2018
  2. Majowicz SE, Musto J, Scallan E, Angulo FJ, Kirk M et al. The global burden of nontyphoidal Salmonella gastroenteritis . Clin Infect Dis 2010; 50:882–889 [CrossRef][PubMed]
    [Google Scholar]
  3. Laupland KB, Schønheyder HC, Kennedy KJ, Lyytikäinen O, Valiquette L et al. Salmonella enterica bacteraemia: a multi-national population-based cohort study. BMC Infect Dis 2010; 10:10–15 [CrossRef]
    [Google Scholar]
  4. Sierra H, Cordova M, Chen C-SJ, Rajadhyaksha M. Confocal imaging-guided laser ablation of basal cell carcinomas: an ex vivo study. J Invest Dermatol 2015; 135:612–615 [CrossRef][PubMed]
    [Google Scholar]
  5. Torraca V, Masud S, Spaink HP, Meijer AH. Macrophage-pathogen interactions in infectious diseases: new therapeutic insights from the zebrafish host model. Dis Model Mech 2014; 7:785–797 [CrossRef][PubMed]
    [Google Scholar]
  6. Monack DM, Bouley DM, Falkow S. Salmonella Typhimurium persists within macrophages in the mesenteric lymph nodes of chronically infected Nramp1+/+ mice and can be reactivated by IFNgamma neutralization. J Exp Med 2004; 199:231–241 [CrossRef][PubMed]
    [Google Scholar]
  7. Haneda T, Sugimoto M, Yoshida-Ohta Y, Kodera Y, Oh-Ishi M et al. Comparative proteomic analysis of Salmonella enterica serovar Typhimurium ppGpp-deficient mutant to identify a novel virulence protein required for intracellular survival in macrophages. BMC Microbiol 2010; 10:324 [CrossRef][PubMed]
    [Google Scholar]
  8. Fogg MJ, Wilkinson AJ. Higher-throughput approaches to crystallization and crystal structure determination. Biochem Soc Trans 2008; 36:771–775 [CrossRef][PubMed]
    [Google Scholar]
  9. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 2018; 46:W296–W303 [CrossRef][PubMed]
    [Google Scholar]
  10. Bienert S, Waterhouse A, de Beer TAP, Tauriello G, Studer G et al. The SWISS-MODEL Repository-new features and functionality. Nucleic Acids Res 2017; 45:D313–D319 [CrossRef][PubMed]
    [Google Scholar]
  11. Guex N, Peitsch MC, Schwede T. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective. Electrophoresis 2009; 30:S162–S173 [CrossRef][PubMed]
    [Google Scholar]
  12. Benkert P, Biasini M, Schwede T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 2011; 27:343–350 [CrossRef][PubMed]
    [Google Scholar]
  13. Neidhardt FC, Bloch PL, Smith DF. Culture medium for enterobacteria. J Bacteriol 1974; 119:736–747 [CrossRef][PubMed]
    [Google Scholar]
  14. Kelly DJ, Thomas GH. The tripartite ATP-independent periplasmic (TRAP) transporters of bacteria and archaea. FEMS Microbiol Rev 2001; 25:405–424 [CrossRef][PubMed]
    [Google Scholar]
  15. Mulligan C, Fischer M, Thomas GH. Tripartite ATP-independent periplasmic (TRAP) transporters in bacteria and archaea. FEMS Microbiol Rev 2011; 35:68–86 [CrossRef][PubMed]
    [Google Scholar]
  16. Rosa LT, Bianconi ME, Thomas GH, Kelly DJ. Tripartite ATP-independent periplasmic (TRAP) transporters and tripartite tricarboxylate transporters (TTT): from uptake to pathogenicity. Front Cell Infect Microbiol 2018; 8:33 [CrossRef][PubMed]
    [Google Scholar]
  17. Vetting MW, Al-Obaidi N, Zhao S, San Francisco B, Kim J et al. Experimental strategies for functional annotation and metabolism discovery: targeted screening of solute binding proteins and unbiased panning of metabolomes. Biochemistry 2015; 54:909–931 [CrossRef][PubMed]
    [Google Scholar]
  18. Fischer M, Hopkins AP, Severi E, Hawkhead J, Bawdon D et al. Tripartite ATP-independent periplasmic (TRAP) transporters use an arginine-mediated selectivity filter for high affinity substrate binding. J Biol Chem 2015; 290:27113–27123 [CrossRef][PubMed]
    [Google Scholar]
  19. Fischer M, Zhang QY, Hubbard RE, Thomas GH. Caught in a TRAP: substrate-binding proteins in secondary transport. Trends Microbiol 2010; 18:471–478 [CrossRef][PubMed]
    [Google Scholar]
  20. Darby JF, Hopkins AP, Shimizu S, Roberts SM, Brannigan JA et al. Water networks can determine the affinity of ligand binding to proteins. J Am Chem Soc 2019; 141:15818–15826 [CrossRef][PubMed]
    [Google Scholar]
  21. Hugouvieux-Cotte-Pattat N, Robert-Baudouy J. Hexuronate catabolism in Erwinia chrysanthemi . J Bacteriol 1987; 169:1223–1231 [CrossRef][PubMed]
    [Google Scholar]
  22. Dehal PS, Joachimiak MP, Price MN, Bates JT, Baumohl JK et al. MicrobesOnline: an integrated portal for comparative and functional genomics. Nucleic Acids Res 2010; 38:D396–D400 [CrossRef][PubMed]
    [Google Scholar]
  23. Horler RSP, Müller A, Williamson DC, Potts JR, Wilson KS et al. Furanose-specific sugar transport: characterization of a bacterial galactofuranose-binding protein. J Biol Chem [Internet] 2009; 284:31156–31163
    [Google Scholar]
  24. Maqbool A, Levdikov VM, Blagova EV, Hervé M, Horler RSP et al. Compensating stereochemical changes allow murein tripeptide to be accommodated in a conventional peptide-binding protein. J Biol Chem 2011; 286:31512–31521 [CrossRef][PubMed]
    [Google Scholar]
  25. Horler RSP, Müller A, Williamson DC, Potts JR, Wilson KS et al. Furanose-specific sugar transport: characterization of a bacterial galactofuranose-binding protein. J Biol Chem 2009; 284:31156-63 [CrossRef][PubMed]
    [Google Scholar]
  26. Severi E, Randle G, Kivlin P, Whitfield K, Young R et al. Sialic acid transport in Haemophilus influenzae is essential for lipopolysaccharide sialylation and serum resistance and is dependent on a novel tripartite ATP-independent periplasmic transporter. Mol Microbiol 2005; 58:1173–1185 [CrossRef][PubMed]
    [Google Scholar]
  27. Krissinel E, Henrick K. Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr D Biol Crystallogr 2004; 60:2256–2268 [CrossRef]
    [Google Scholar]
  28. McNicholas S, Potterton E, Wilson KS, Noble MEM. Presenting your structures: the CCP4mg molecular-graphics software. Acta Crystallogr D Biol Crystallogr 2011; 67:386–394 [CrossRef][PubMed]
    [Google Scholar]
  29. Gutnick D, Calvo JM, Klopotowski T, Ames BN. Compounds which serve as the sole source of carbon or nitrogen for Salmonella typhimurium LT-2. J Bacteriol 1969; 100:215–219 [CrossRef][PubMed]
    [Google Scholar]
  30. Eriksson S, Lucchini S, Thompson A, Rhen M, Hinton JCD. Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol Microbiol 2003; 47:103–118 [CrossRef][PubMed]
    [Google Scholar]
  31. Thomas GH, Southworth T, León-Kempis MR, Leech A, Kelly DJ. Novel ligands for the extracellular solute receptors of two bacterial TRAP transporters. Microbiology 2006; 152:187–198 [CrossRef][PubMed]
    [Google Scholar]
  32. Plantinga TH, van der Does C, Tomkiewicz D, van Keulen G, Konings WN et al. Deletion of the yiaMNO transporter genes affects the growth characteristics of Escherichia coli K-12. Microbiology 2005; 151:1683–1689 [CrossRef][PubMed]
    [Google Scholar]
  33. Plantinga TH, Van Der Does C, Badia J, Aguilar J, Konings WN et al. Functional characterization of the Escherichia coli K-12 yiaMNO transport protein genes. Mol Membr Biol 2004; 21:51–57 [CrossRef][PubMed]
    [Google Scholar]
  34. Novichkov PS, Kazakov AE, Ravcheev DA, Leyn SA, Kovaleva GY et al. RegPrecise 3.0 – A resource for genome-scale exploration of transcriptional regulation in bacteria. BMC Genomics 2013; 14:745 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000967
Loading
/content/journal/micro/10.1099/mic.0.000967
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error