1887

Abstract

Maturation of [NiFe]-hydrogenases often involves specific proteases responsible for cleavage of the catalytic subunits. HycI is the protease dedicated to maturation of the Hydrogenase-3 isoenzyme, a component of formate hydrogenlyase-1. In this work, it is demonstrated that a HycI homologue, HyfK, is required for hydrogenase-4 activity, a component of formate hydrogenlyase-2, in that bacterium. The Δ mutant phenotype could be rescued by either or on a plasmid. Conversely, an Δ mutant was complemented by either or is a rare example of a bacterium containing both hydrogenase-3 and hydrogenase-4, however the operon encoding hydrogenase-4 has no maturation protease gene. This work suggests HycI should be sufficient for maturation of both formate hydrogenlyases, however no formate hydrogenlyase-2 activity was detected in any strains tested here.

Funding
This study was supported by the:
  • Sarah J Coulthurst , Wellcome Trust , (Award 104556/Z/14/Z)
  • Frank Sargent , Biotechnology and Biological Sciences Research Council , (Award 1510231)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000963
2020-07-30
2020-10-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/166/9/854.html?itemId=/content/journal/micro/10.1099/mic.0.000963&mimeType=html&fmt=ahah

References

  1. Lubitz W, Ogata H, Rüdiger O, Reijerse E. Hydrogenases. Chem Rev 2014; 114:4081–4148 [CrossRef][PubMed]
    [Google Scholar]
  2. Sargent F. The Model [NiFe]-Hydrogenases of Escherichia coli . Adv Microb Physiol 2016; 68:433–507 [CrossRef][PubMed]
    [Google Scholar]
  3. Kwon S, Watanabe S, Nishitani Y, Kawashima T, Kanai T et al. Crystal structures of a [NiFe] hydrogenase large subunit HyhL in an immature state in complex with a Ni chaperone HypA. Proc Natl Acad Sci USA 2018; 115:7045–7050 [CrossRef][PubMed]
    [Google Scholar]
  4. Böck A, King PW, Blokesch M, Posewitz MC. Maturation of hydrogenases. Adv Microb Physiol 2006; 51:1–71 [CrossRef][PubMed]
    [Google Scholar]
  5. Rossmann R, Sauter M, Lottspeich F, Böck A. Maturation of the large subunit (HYCE) of Escherichia coli hydrogenase 3 requires nickel incorporation followed by C-terminal processing at Arg537. Eur J Biochem 1994; 220:377–384 [CrossRef][PubMed]
    [Google Scholar]
  6. Rossmann R, Maier T, Lottspeich F, Böck A. Characterisation of a protease from Escherichia coli involved in hydrogenase maturation. Eur J Biochem 1995; 227:545–550 [CrossRef][PubMed]
    [Google Scholar]
  7. Yang F, Hu W, Xu H, Li C, Xia B et al. Solution structure and backbone dynamics of an endopeptidase HycI from Escherichia coli: implications for mechanism of the [NiFe] hydrogenase maturation. J Biol Chem 2007; 282:3856–3863 [CrossRef][PubMed]
    [Google Scholar]
  8. Kumarevel T, Tanaka T, Bessho Y, Shinkai A, Yokoyama S. Crystal structure of hydrogenase maturating endopeptidase HycI from Escherichia coli . Biochem Biophys Res Commun 2009; 389:310–314 [CrossRef][PubMed]
    [Google Scholar]
  9. Binder U, Maier T, Böck A. Nickel incorporation into hydrogenase 3 from Escherichia coli requires the precursor form of the large subunit. Arch Microbiol 1996; 165:69–72 [CrossRef][PubMed]
    [Google Scholar]
  10. Greening C, Biswas A, Carere CR, Jackson CJ, Taylor MC et al. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. Isme J 2016; 10:761–777 [CrossRef][PubMed]
    [Google Scholar]
  11. Finney AJ, Sargent F. Formate hydrogenlyase: a group 4 [NiFe]-hydrogenase in tandem with a formate dehydrogenase. Adv Microb Physiol 2019; 74:465–486 [CrossRef][PubMed]
    [Google Scholar]
  12. Böhm R, Sauter M, Böck A. Nucleotide sequence and expression of an operon in Escherichia coli coding for formate hydrogenlyase components. Mol Microbiol 1990; 4:231–243 [CrossRef][PubMed]
    [Google Scholar]
  13. Andrews SC, Berks BC, McClay J, Ambler A, Quail MA et al. A 12-cistron Escherichia coli operon (hyf) encoding a putative proton-translocating formate hydrogenlyase system. Microbiology 1997; 143 (Pt 11):3633–3647 [CrossRef][PubMed]
    [Google Scholar]
  14. Skibinski DAG, Golby P, Chang Y-S, Sargent F, Hoffman R et al. Regulation of the hydrogenase-4 operon of Escherichia coli by the sigma(54)-dependent transcriptional activators FhlA and HyfR. J Bacteriol 2002; 184:6642–6653 [CrossRef][PubMed]
    [Google Scholar]
  15. Self WT, Hasona A, Shanmugam KT. Expression and regulation of a silent operon, hyf, coding for hydrogenase 4 isoenzyme in Escherichia coli . J Bacteriol 2004; 186:580–587 [CrossRef][PubMed]
    [Google Scholar]
  16. Redwood MD, Mikheenko IP, Sargent F, Macaskie LE. Dissecting the roles of Escherichia coli hydrogenases in biohydrogen production. FEMS Microbiol Lett 2008; 278:48–55 [CrossRef][PubMed]
    [Google Scholar]
  17. Trchounian K, Poladyan A, Vassilian A, Trchounian A. Multiple and reversible hydrogenases for hydrogen production by Escherichia coli: dependence on fermentation substrate, pH and the F(0)F(1)-ATPase. Crit Rev Biochem Mol Biol 2012; 47:236–249 [CrossRef][PubMed]
    [Google Scholar]
  18. Bagramyan K, Vassilian A, Mnatsakanyan N, Trchounian A. Participation of hyf-encoded hydrogenase 4 in molecular hydrogen release coupled with proton-potassium exchange in Escherichia coli . Membr Cell Biol 2001; 14:749–763[PubMed]
    [Google Scholar]
  19. Sanchez-Torres V, Maeda T, Wood TK. Protein engineering of the transcriptional activator FHLA to enhance hydrogen production in Escherichia coli . Appl Environ Microbiol 2009; 75:5639–5646 [CrossRef][PubMed]
    [Google Scholar]
  20. Lacasse MJ, Sebastiampillai S, Côté J-P, Hodkinson N, Brown ED et al. A whole-cell, high-throughput hydrogenase assay to identify factors that modulate [NiFe]-hydrogenase activity. J Biol Chem 2019; 294:15373–15385 [CrossRef][PubMed]
    [Google Scholar]
  21. Miller JH. Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1972
    [Google Scholar]
  22. Hamilton CM, Aldea M, Washburn BK, Babitzke P, Kushner SR. New method for generating deletions and gene replacements in Escherichia coli . J Bacteriol 1989; 171:4617–4622 [CrossRef][PubMed]
    [Google Scholar]
  23. Pinske C, Sargent F. Exploring the directionality of Escherichia coli formate hydrogenlyase: a membrane-bound enzyme capable of fixing carbon dioxide to organic acid. Microbiology Open 2016; 5:721–737 [CrossRef][PubMed]
    [Google Scholar]
  24. Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V et al. The complete genome sequence of Escherichia coli K-12. Science 1997; 277:1453–1462 [CrossRef][PubMed]
    [Google Scholar]
  25. McDowall JS, Murphy BJ, Haumann M, Palmer T, Armstrong FA et al. Bacterial formate hydrogenlyase complex. Proc Natl Acad Sci USA 2014; 111:E3948–E3956 [CrossRef][PubMed]
    [Google Scholar]
  26. Peters JE, Thate TE, Craig NL. Definition of the Escherichia coli MC4100 genome by use of a DNA array. J Bacteriol 2003; 185:2017–2021 [CrossRef][PubMed]
    [Google Scholar]
  27. Casadaban MJ, Cohen SN. Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage: in vivo probe for transcriptional control sequences. Proc Natl Acad Sci USA 1979; 76:4530–4533 [CrossRef][PubMed]
    [Google Scholar]
  28. Finney AJ, Lowden R, Fleszar M, Albareda M, Coulthurst SJ et al. The plant pathogen Pectobacterium atrosepticum contains a functional formate hydrogenlyase-2 complex. Mol Microbiol 2019; 112:1440–1452 [CrossRef][PubMed]
    [Google Scholar]
  29. Lindenstrauß U, Pinske C. Dissection of the hydrogen metabolism of the enterobacterium Trabulsiella guamensis: identification of a formate-dependent and essential formate hydrogenlyase complex exhibiting phylogenetic similarity to complex I. J Bacteriol 2019; 201:e00160-19 [CrossRef][PubMed]
    [Google Scholar]
  30. Kruse S, Goris T, Wolf M, Wei X, Diekert G. The [NiFe] hydrogenases of the tetrachloroethene-respiring Epsilonproteobacterium Sulfurospirillum multivorans: biochemical studies and transcription analysis. Front Microbiol 2017; 8:444 [CrossRef][PubMed]
    [Google Scholar]
  31. Benoit SL, Maier RJ. Site-directed mutagenesis of Campylobacter concisus respiratory genes provides insight into the pathogen's growth requirements. Sci Rep 2018; 8:14203 [CrossRef][PubMed]
    [Google Scholar]
  32. Mohr T, Aliyu H, Küchlin R, Zwick M, Cowan D et al. Comparative genomic analysis of Parageobacillus thermoglucosidasius strains with distinct hydrogenogenic capacities. BMC Genomics 2018; 19:880 [CrossRef][PubMed]
    [Google Scholar]
  33. Søndergaard D, Pedersen CNS, Greening C. HydDB: a web tool for hydrogenase classification and analysis. Sci Rep 2016; 6:34212 [CrossRef][PubMed]
    [Google Scholar]
  34. Albareda M, Buchanan G, Sargent F. Identification of a stable complex between a [NiFe]-hydrogenase catalytic subunit and its maturation protease. FEBS Lett 2017; 591:338–347 [CrossRef][PubMed]
    [Google Scholar]
  35. Kanai T, Yasukochi A, Simons J-R, Scott JW, Fukuda W et al. Genetic analyses of the functions of [NiFe]-hydrogenase maturation endopeptidases in the hyperthermophilic archaeon Thermococcus kodakarensis . Extremophiles 2017; 21:27–39 [CrossRef][PubMed]
    [Google Scholar]
  36. Fox JD, He Y, Shelver D, Roberts GP, Ludden PW. Characterization of the region encoding the CO-induced hydrogenase of Rhodospirillum rubrum . J Bacteriol 1996; 178:6200–6208 [CrossRef][PubMed]
    [Google Scholar]
  37. Künkel A, Vorholt JA, Thauer RK, Hedderich R. An Escherichia coli hydrogenase-3-type hydrogenase in methanogenic archaea. Eur J Biochem 1998; 252:467–476 [CrossRef][PubMed]
    [Google Scholar]
  38. Vignais PM, Billoud B. Occurrence, classification, and biological function of hydrogenases: an overview. Chem Rev 2007; 107:4206–4272 [CrossRef][PubMed]
    [Google Scholar]
  39. Kleihues L, Lenz O, Bernhard M, Buhrke T, Friedrich B. The H(2) sensor of Ralstonia eutropha is a member of the subclass of regulatory [NiFe] hydrogenases. J Bacteriol 2000; 182:2716–2724 [CrossRef][PubMed]
    [Google Scholar]
  40. Hartmann S, Frielingsdorf S, Caserta G, Lenz O. A membrane‐bound [NiFe]‐hydrogenase large subunit precursor whose C‐terminal extension is not essential for cofactor incorporation but guarantees optimal maturation. Microbiology Open 2020; 9:e1029–1206 [CrossRef]
    [Google Scholar]
  41. Bernhard M, Schwartz E, Rietdorf J, Friedrich B. The Alcaligenes eutrophus membrane-bound hydrogenase gene locus encodes functions involved in maturation and electron transport coupling. J Bacteriol 1996; 178:4522–4529 [CrossRef][PubMed]
    [Google Scholar]
  42. Pinske C, Thomas C, Nutschan K, Sawers RG. Delimiting the function of the C-terminal extension of the Escherichia coli [NiFe]-Hydrogenase 2 large subunit precursor. Front Microbiol 2019; 10:2223 [CrossRef][PubMed]
    [Google Scholar]
  43. Theodoratou E, Paschos A, Böck A. Analysis of the cleavage site specificity of the endopeptidase involved in the maturation of the large subunit of hydrogenase 3 from Escherichia coli . Arch Microbiol 2000; 173:110–116 [CrossRef][PubMed]
    [Google Scholar]
  44. Thomas C, Muhr E, Sawers RG. Coordination of synthesis and assembly of a modular membrane-associated [NiFe]-hydrogenase Is determined by cleavage of the C-terminal peptide. J Bacteriol 2015; 197:2989–2998 [CrossRef][PubMed]
    [Google Scholar]
  45. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal omega. Mol Syst Biol 2011; 7:539 [CrossRef][PubMed]
    [Google Scholar]
  46. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [CrossRef][PubMed]
    [Google Scholar]
  47. Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. Jalview Version 2: a multiple sequence alignment editor and analysis workbench. Bioinformatics 2009; 25:1189–1191 [CrossRef][PubMed]
    [Google Scholar]
  48. Bell KS, Sebaihia M, Pritchard L, Holden MTG, Hyman LJ et al. Genome sequence of the enterobacterial phytopathogen Erwinia carotovora subsp. atroseptica and characterization of virulence factors. Proc Natl Acad Sci USA 2004; 101:11105–11110 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000963
Loading
/content/journal/micro/10.1099/mic.0.000963
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error