is capable of natural transformation in biofilms Open Access

Abstract

Natural transformation is a mechanism that enables competent bacteria to acquire naked, exogenous DNA from the environment. It is a key process that facilitates the dissemination of antibiotic resistance and virulence determinants throughout bacterial populations. is an opportunistic Gram-negative pathogen that produces large quantities of extracellular DNA (eDNA) that is required for biofilm formation. has a remarkable level of genome plasticity and diversity that suggests a high degree of horizontal gene transfer and recombination but is thought to be incapable of natural transformation. Here we show that possesses homologues of all proteins known to be involved in natural transformation in other bacterial species. We found that in biofilms is competent for natural transformation of both genomic and plasmid DNA. Furthermore, we demonstrate that type-IV pili (T4P) facilitate but are not absolutely essential for natural transformation in .

Funding
This study was supported by the:
  • Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Award P2GEP3_161769)
    • Principle Award Recipient: Davide Losa
  • Imperial College London (Award ICRF)
    • Principle Award Recipient: Laura M Nolan
  • National Health and Medical Research Council (Award 571905)
    • Principle Award Recipient: Cynthia B Whitchurch
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000956
2020-08-04
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/166/10/995.html?itemId=/content/journal/micro/10.1099/mic.0.000956&mimeType=html&fmt=ahah

References

  1. O’Neill J. Tackling drug-resistant infections globally: final report and recommendations. (UK Government and Wellcome Trust, 2016).
  2. Pallen MJ, Wren BW. Bacterial pathogenomics. Nature 2007; 449:835–842 [View Article][PubMed]
    [Google Scholar]
  3. Davison J. Genetic exchange between bacteria in the environment. Plasmid 1999; 42:73–91 [View Article][PubMed]
    [Google Scholar]
  4. Dubnau D, Blokesch M. Mechanisms of DNA uptake by naturally competent bacteria. Annu Rev Genet 2019; 53:217–237 [View Article][PubMed]
    [Google Scholar]
  5. Dubnau D. DNA uptake in bacteria. Annu Rev Microbiol 1999; 53:217–244 [View Article][PubMed]
    [Google Scholar]
  6. Ibáñez de Aldecoa AL, Zafra O, González-Pastor JE. Mechanisms and regulation of extracellular DNA release and its biological roles in microbial communities. Front Microbiol 2017; 8:1390 [View Article][PubMed]
    [Google Scholar]
  7. Ellison CK, Dalia TN, Vidal Ceballos A, Wang JC-Y, Biais N et al. Retraction of DNA-bound type IV competence pili initiates DNA uptake during natural transformation in Vibrio cholerae . Nat Microbiol 2018; 3:773–780 [View Article][PubMed]
    [Google Scholar]
  8. Chen I, Dubnau D. DNA uptake during bacterial transformation. Nat Rev Microbiol 2004; 2:241–249 [View Article][PubMed]
    [Google Scholar]
  9. Hasegawa H, Suzuki E, Maeda S. Horizontal plasmid transfer by transformation in Escherichia coli: environmental factors and possible mechanisms. Front Microbiol 2018; 9:2365 [View Article][PubMed]
    [Google Scholar]
  10. Sun D, Zhang X, Wang L, Prudhomme M, Xie Z et al. Transforming DNA uptake gene orthologs do not mediate spontaneous plasmid transformation in Escherichia coli . J Bacteriol 2009; 191:713–719 [View Article][PubMed]
    [Google Scholar]
  11. Kung VL, Ozer EA, Hauser AR. The accessory genome of Pseudomonas aeruginosa . Microbiol Mol Biol Rev 2010; 74:621–641 [View Article][PubMed]
    [Google Scholar]
  12. Shen K, Sayeed S, Antalis P, Gladitz J, Ahmed A et al. Extensive genomic plasticity in Pseudomonas aeruginosa revealed by identification and distribution studies of novel genes among clinical isolates. Infect Immun 2006; 74:5272–5283 [View Article][PubMed]
    [Google Scholar]
  13. Carlson CA, Pierson LS, Rosen JJ, Ingraham JL. Pseudomonas stutzeri and related species undergo natural transformation. J Bacteriol 1983; 153:93–99 [View Article][PubMed]
    [Google Scholar]
  14. Whitchurch CB. Ramos JL, Levesque RC. (editors) Pseudomonas Volume 4 Molecular Biology of Emerging Issues USA: Springer; 2006 pp 139–188
    [Google Scholar]
  15. Allesen-Holm M, Barken KB, Yang L, Klausen M, Webb JS et al. A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol 2006; 59:1114–1128 [View Article][PubMed]
    [Google Scholar]
  16. Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS. Extracellular DNA required for bacterial biofilm formation. Science 2002; 295:1487 [View Article][PubMed]
    [Google Scholar]
  17. Gloag ES, Turnbull L, Huang A, Vallotton P, Wang H et al. Self-Organization of bacterial biofilms is facilitated by extracellular DNA. Proc Natl Acad Sci U S A 2013; 110:11541–11546 [View Article][PubMed]
    [Google Scholar]
  18. Turnbull L, Toyofuku M, Hynen AL, Kurosawa M, Pessi G et al. Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms. Nat Commun 2016; 7:11220 [View Article][PubMed]
    [Google Scholar]
  19. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 2000; 406:959–964 [View Article][PubMed]
    [Google Scholar]
  20. Takeya K, Amako K. A rod-shaped Pseudomonas phage. Virology 1966; 28:163–165 [View Article]
    [Google Scholar]
  21. Rahme LG, Stevens EJ, Wolfort SF, Shao J, Tompkins RG et al. Common virulence factors for bacterial pathogenicity in plants and animals. Science 1995; 268:1899–1902 [View Article][PubMed]
    [Google Scholar]
  22. Liu PV. Exotoxins of Pseudomonas aeruginosa. I. Factors that influence the production of exotoxin A. J Infect Dis 1973; 128:506–513 [View Article][PubMed]
    [Google Scholar]
  23. Klausen M, Heydorn A, Ragas P, Lambertsen L, Aaes-Jørgensen A et al. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 2003; 48:1511–1524 [View Article][PubMed]
    [Google Scholar]
  24. Hoang TT, Kutchma AJ, Becher A, Schweizer HP. Integration-proficient plasmids for Pseudomonas aeruginosa: site-specific integration and use for engineering of reporter and expression strains. Plasmid 2000; 43:59–72 [View Article][PubMed]
    [Google Scholar]
  25. Watson AA, Mattick JS, Alm RA. Functional expression of heterologous type 4 fimbriae in Pseudomonas aeruginosa . Gene 1996; 175:143–150 [View Article][PubMed]
    [Google Scholar]
  26. Martin PR, Hobbs M, Free PD, Jeske Y, Mattick JS. Characterization of pilQ, a new gene required for the biogenesis of type 4 fimbriae in Pseudomonas aeruginosa . Mol Microbiol 1993; 9:857–868 [View Article][PubMed]
    [Google Scholar]
  27. Whitchurch CB, Hobbs M, Livingston SP, Krishnapillai V, Mattick JS. Characterisation of a Pseudomonas aeruginosa twitching motility gene and evidence for a specialised protein export system widespread in eubacteria. Gene 1991; 101:33–44 [View Article][PubMed]
    [Google Scholar]
  28. Alm RA, Mattick JS. Identification of a gene, pilV, required for type 4 fimbrial biogenesis in Pseudomonas aeruginosa, whose product possesses a pre-pilin-like leader sequence. Mol Microbiol 1995; 16:485–496 [View Article][PubMed]
    [Google Scholar]
  29. Semmler AB, Whitchurch CB, Leech AJ, Mattick JS. Identification of a novel gene,. Microbiology 2000; 146:1321–1332
    [Google Scholar]
  30. Watson AA, Alm RA, Mattick JS. Construction of improved vectors for protein production in Pseudomonas aeruginosa . Gene 1996; 172:163–164 [View Article][PubMed]
    [Google Scholar]
  31. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article][PubMed]
    [Google Scholar]
  32. Winsor GL, Griffiths EJ, Lo R, Dhillon BK, Shay JA et al. Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database. Nucleic Acids Res 2016; 44:D646–D653 [View Article][PubMed]
    [Google Scholar]
  33. Cain AK, Nolan LM, Sullivan GJ, Whitchurch CB, Filloux A et al. Complete genome sequence of Pseudomonas aeruginosa reference strain PAK. Microbiol Resour Announc 2019; 8:e00865-19 [View Article][PubMed]
    [Google Scholar]
  34. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 1988; 16:12–15 [View Article][PubMed]
    [Google Scholar]
  35. Schleheck D, Barraud N, Klebensberger J, Webb JS, McDougald D et al. Pseudomonas aeruginosa PAO1 preferentially grows as aggregates in liquid batch cultures and disperses upon starvation. PLoS One 2009; 4:e5513 [View Article][PubMed]
    [Google Scholar]
  36. Seitz P, Blokesch M. DNA-uptake machinery of naturally competent Vibrio cholerae . Proc Natl Acad Sci U S A 2013; 110:17987–17992 [View Article][PubMed]
    [Google Scholar]
  37. Semmler AB, Whitchurch CB, Mattick JS. A re-examination of twitching motility in Pseudomonas aeruginosa. microbiology (reading, Engl.); 1999; 1452863–2873
  38. Klausen M, Aaes-Jørgensen A, Molin S, Tolker-Nielsen T. Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol Microbiol 2003; 50:61–68 [View Article][PubMed]
    [Google Scholar]
  39. Palchevskiy V, Finkel SE. Escherichia coli competence gene homologs are essential for competitive fitness and the use of DNA as a nutrient. J Bacteriol 2006; 188:3902–3910 [View Article][PubMed]
    [Google Scholar]
  40. Dettman JR, Rodrigue N, Kassen R. Genome-wide patterns of recombination in the opportunistic human pathogen Pseudomonas aeruginosa . Genome Biol Evol 2014; 7:18–34 [View Article][PubMed]
    [Google Scholar]
  41. Winstanley C, O'Brien S, Brockhurst MA. Pseudomonas aeruginosa evolutionary adaptation and diversification in cystic fibrosis chronic lung infections. Trends Microbiol 2016; 24:327–337 [View Article][PubMed]
    [Google Scholar]
  42. Darch SE, McNally A, Harrison F, Corander J, Barr HL et al. Recombination is a key driver of genomic and phenotypic diversity in a Pseudomonas aeruginosa population during cystic fibrosis infection. Sci Rep 2015; 5:7649 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000956
Loading
/content/journal/micro/10.1099/mic.0.000956
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed