1887

Abstract

The genus , belonging to the phylum is one of the most important genera and comprises thermophilic bacteria. The genus was erected with the taxonomic reclassification of various species. Taxonomic studies of remain in progress. However, there is no comprehensive review of the characteristic features, taxonomic status and study of various applications of this interesting genus. The main aim of this review is to give a comprehensive account of the genus . At present the genus acomprises 25 taxa, 14 validly published (with correct name), nine validly published (with synonyms) and two not validly published species. We describe only validly published species of the genera and . Vegetative cells of species are Gram-strain-positive or -variable, rod-shaped, motile, endospore-forming, aerobic or facultatively anaerobic, obligately thermophilic and chemo-organotrophic. Growth occurs in the pH range 6.08.5 and a temperature of 37–75 °C. The major cellular fatty acids are iso-C15:o, iso-C16:0 and iso-C17:o. The main menaquinone type is MK-7. The G­+C content of the DNA ranges between 48.2 and 58 mol%. The genus is widely distributed in nature, being mostly found in many extreme locations such as hot springs, hydrothermal vents, marine trenches, hay composts, etc. species have been widely exploited in various industrial and biotechnological applications, and thus are promising candidates for further studies in the future.

Funding
This study was supported by the:
  • Nagendra Thakur , Department of Biotechnology, Ministry of Science and Technology, Government of India , (Award DBT-NER/Health/45/2015 & BT/PR25092/NER/95/1009/2017)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000945
2020-08-03
2020-10-29
Loading full text...

Full text loading...

References

  1. Knoll AH, Bauld J. The evolution of ecological tolerance in prokaryotes. Trans R Soc Edinb Earth Sci 1989; 80:209–223 [CrossRef][PubMed]
    [Google Scholar]
  2. Aanniz T, Ouadghiri M, Melloul M, Swings J, Elfahime E et al. Thermophilic bacteria in Moroccan hot springs, salt marshes, and desert soils. Brazilian J Microbiol 2015; 46:443–453
    [Google Scholar]
  3. Brumm PJ, Land ML, Mead DA. Complete genome sequence of Geobacillus thermoglucosidasius C56-YS93, a novel biomass degrader isolated from obsidian hot spring in Yellowstone National Park. Stand Genomic Sci 2015; 10:1–10
    [Google Scholar]
  4. Zeigler DR. The Geobacillus paradox: why is a thermophilic bacterial genus so prevalent on a mesophilic planet?. Microbiology 2014; 160:1–11 [CrossRef]
    [Google Scholar]
  5. Maugeri T, Gugliandolo C, Caccamo D, Stackebrandt E. Three novel halotolerant and thermophilic Geobacillus strains from shallow marine vents. Syst Appl Microbiol 2002; 25:450–455
    [Google Scholar]
  6. Popova NA, Nikolaev IA, Turova TP, Lysenko AM, Osipov GA et al. Geobacillus uralicus, a new species of thermophilic bacteria. Microbiology 2002; 71:335–341 [CrossRef][PubMed]
    [Google Scholar]
  7. Hawumba JF, Theron J, Brözel VS. Thermophilic protease-producing Geobacillus from Buranga hot springs in Western Uganda. Curr Microbiol 2002; 45:144–150
    [Google Scholar]
  8. Nazina TN, Lebedeva EV, Poltaraus AB, Tourova TP, Grigoryan AA et al. Geobacillus gargensis sp. nov., a novel thermophile from a hot spring, and the reclassification of Bacillus vulcani as Geobacillus vulcani comb. nov. Int J Syst Evol Microbiol 2004a; 54:2019–2024 [CrossRef][PubMed]
    [Google Scholar]
  9. Takami H, Nishi S, Lu J, Shimamura S, Takaki Y. Genomic characterization of thermophilic Geobacillus species isolated from the deepest sea mud of the Mariana Trench. Extremophiles 2004; 8:351–356 [CrossRef][PubMed]
    [Google Scholar]
  10. Sung MH, Kim H, Bae JW, Rhee SK, Jeon CO et al. Geobacillus toebii sp. nov., a novel thermophilic bacterium isolated from hay compost. Int J Syst Evol Microbiol 2002; 52:2251–2255 [CrossRef][PubMed]
    [Google Scholar]
  11. Wiegand S, Rabausch U, Chow J, Daniel R, Streit WR et al. Complete genome sequence of Geobacillus sp. strain GHH01, a thermophilic lipase-secreting bacterium. Genome Announc 2013; 1:1–2 [CrossRef][PubMed]
    [Google Scholar]
  12. Burrows SM, Elbert W, Lawrence MG, Pöschl U. Bacteria in the global atmosphere – Part 1: review and synthesis of literature data for different ecosystems, Atmos. Chem Phys 2009; 9:9263–9280
    [Google Scholar]
  13. Setlow P. Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. J Appl Microbiol 2006; 101:514–525 [CrossRef][PubMed]
    [Google Scholar]
  14. de Champdoré M, Staiano M, Rossi M, D’Auria S. Proteins from extremophiles as stable tools for advanced biotechnological applications of high social interest. J R Soc Interface 2007; 4:183–191
    [Google Scholar]
  15. Cripps RE, Eley K, Leak DJ, Rudd B, Taylor M et al. Metabolic engineering of Geobacillus thermoglucosidasius for high yield ethanol production. Metab Eng 2009; 11:398–408 [CrossRef][PubMed]
    [Google Scholar]
  16. Markossian S, Becker P, Märkl H, Antranikian G. Isolation and characterization of Lipid-degrading Bacillus thermoleovorans IHI-91 from an Icelandic hot spring. Extremophiles 2000; 4:365–371
    [Google Scholar]
  17. Kumar A, Prameela TP, Suseelabhai R. A unique DNA repair and recombination gene (rec N) sequence for identification and intraspecific molecular typing of bacterial wilt pathogen Ralstonia solanacearum and its comparative analysis with ribosomal DNA sequences. J Biosci 2013; 38:267–278
    [Google Scholar]
  18. Zeigler DR. Gene sequences useful for predicting relatedness of whole genomes in bacteria. Int J Syst Evol Microbiol 2003; 53:1893–1900 [CrossRef][PubMed]
    [Google Scholar]
  19. Martens M, Dawyndt P, Coopman R, Gillis M, Vos PD et al. Advantages of multilocus sequence analysis for taxonomic studies: a case study using 10 housekeeping genes in the genus Ensifer (including former advantages of multilocus sequence analysis for taxonomic studies: a case study using 10 housekeeping genes. Int J Syst Evol Microbiol 2008; 58:200–214
    [Google Scholar]
  20. Glazunova OO, Raoult D. Partial recN gene sequencing: a new tool for identification and phylogeny within the genus Streptococcus . Int J Syst Evol Microbiol 2010; 60:2140–2148
    [Google Scholar]
  21. Zeigler DR. Application of a recN sequence similarity analysis to the identification of species within the bacterial genus Geobacillus . Int J Syst Evol Microbiol 2005; 55:1171–1179 [CrossRef][PubMed]
    [Google Scholar]
  22. Aliyu H, Lebre P, Blom J, Cowan D, Maayer PD. Phylogenomic re-assessment of the thermophilic genus Geobacillus . Syst Appl Microbiol 2016; 39:527–533
    [Google Scholar]
  23. Ash C, Farrow JAE, Wallbanks S, Collins MD. Phylogenetic heterogeneity of the genus Bacillus revealed by a comparative analysis of small subunit ribosomal RNA sequences. Lett Appl Microbiol 1991; 13:202–206
    [Google Scholar]
  24. Nazina TN, Griror’yan AA, Feng Q, Shestakova NM, Babich TL et al. Microbiological and production characteristics of the high-temperature Kongdian petroleum reservoir revealed during field trial of biotechnology for the enhancement of oil recovery. Microbiology 2007; 76:297–309 [CrossRef]
    [Google Scholar]
  25. Nazina TN, Tourova TP, Poltaraus AB, Novikova EV, Ivanova AE et al. Physiological and phylogenetic diversity of thermophilic spore-forming hydrocarbon-oxidizing bacteria from oil fields. Microbiology 2000; 69:96–102 [CrossRef]
    [Google Scholar]
  26. Nazina TN, Tourova TP. Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermo- catenulatus, Bacillus . Int J Syst Evol Microbiol 2001; 51:433–446
    [Google Scholar]
  27. Aliyu H, Lebre P, Blom J, Cowana D, Maayer PD. Corrigendum to “Phylogenomic re-assessment of the thermophilic genus Geobacillus” [Syst. Appl. Microbiol. 39 (2016) 527–533]. Syst Appl Microbiol 2018; 41:529–530
    [Google Scholar]
  28. Coorevits A, Dinsdale AE, Halket G, Lebbe L, Vos PD et al. Taxonomic revision of the genus Geobacillus: emendation of Geobacillus, G. stearothermophilus, G. jurassicus, G. toebii, G. thermodenitrificans and thermoglucosidasius; transfer of Bacillus thermantarcticus to the genus as G. thermantarcti . Int J Syst Evol Microbiol 2012; 62:1470–1485
    [Google Scholar]
  29. Sunna A, Tokajian S, Burghardt J, Rainey F, Antranikian G et al. Identification of Bacillus kaustophilus, Bacillus thermocatenulatus and Bacillus strain HSR as members of Bacillus thermoleovorans . Syst Appl Microbiol 1997; 20:232–237 [CrossRef]
    [Google Scholar]
  30. Zarilla KA, Perry JJ. Bacillus thermokovorans, sp. nov., a species of obligately thermophilic hydrocarbon utilizing endospore-forming bacteria. Syst Appl Microbiol 1987; 9:258–264 [CrossRef]
    [Google Scholar]
  31. Priest FG, Goodfellow M, Todd C. A numerical classification of the genus Bacillus . J Gen Microbiol 1988; 134:1847–1882
    [Google Scholar]
  32. White D, Sharp RJ, Priest FG. A polyphasic taxonomic study of thermophilic bacilli from a wide geographical area. Antonie van Leeuwenhoek 1993; 64:357–386 [CrossRef][PubMed]
    [Google Scholar]
  33. Manachini PL, Mora D, Nicastro G, Parini C, Stackebrandt E et al. Bacillus thermodenitrificans sp. nov., nom. rev. Int J Syst Evol Microbiol 2000; 50:1331–1337
    [Google Scholar]
  34. Poli A, Laezza G, Gul-guven R, Orlando P, Nicolaus B. Geobacillus galactosidasius sp. nov, a new thermophilic galactosidase-producing bacterium isolated from compost. Syst Appl Microbiol 2011; 34:419–423
    [Google Scholar]
  35. Nazina TN, Sokolova DS, Grigoryan AA, Shestakova NM, Mikhailova EM et al. Geobacillus jurassicus sp. nov., a new thermophilic bacterium isolated from a high-temperature petroleum reservoir, and the validation of the Geobacillus species. Syst Appl Microbiol 2005; 28:43–53
    [Google Scholar]
  36. Bryanskaya A, Rozanov AS, Slynko NM, Shekhovtsov S, Peltek SE. Geobacillus icigianus sp. nov., a new thermophilic bacterium isolated from the Valley of Geysers, Kamchatka. Int J Syst Evol Microbiol 2015; 65:864–869
    [Google Scholar]
  37. Poli A, Guven K, Romano I, Pirinccioglu H, Guven RG et al. Geobacillus subterraneus subsp. aromaticivorans subsp.nov, a novel thermophilic and alkaliphilic bacterium isolated from a hot spring in Sırnak, Turkey. J Gen Appl Microbiol 2012; 446:437–446
    [Google Scholar]
  38. Dinsdale AE, Halket G, Coorevits A, Landschoot AV, Vos PD et al. Emended descriptions of Geobacillus thermoleovorans and Geobacillus thermocatenulatus . Int J Syst Evol Microbiol 2011; 61:1802–1810
    [Google Scholar]
  39. Kuisiene N, Raugalas J, Chitavichius D. Geobacillus lituanicus sp. nov. Int J Syst Evol Microbiol 2004b; 54:1991–1995
    [Google Scholar]
  40. Caccamo D, Gugliandolo C, Stackebrandt E, Maugeri TL. Bacillus vulcani sp. nov., a novel thermophilic species isolated from a shallow marine hydrothermal vent. Int J Syst Evol Microbiol 2000; 50:2009–2012
    [Google Scholar]
  41. Nazina TN, Lebedeva EV, Poltaraus AB, Tourova TP, Grigoryan AA et al. Geobacillus gargensis sp. nov., a novel thermophile from a hot spring, and the reclassification of Bacillus vulcani as Geobacillus vulcani comb. nov. Int J Syst Evol Microbiol 2004b; 54:2019–2024 [CrossRef][PubMed]
    [Google Scholar]
  42. Najar IN, Sherpa MT, Das S, Verma K, Dubey VK et al. Geobacillus yumthangensis sp. nov., a thermophilic bacterium isolated from a north-east Indian hot spring. Int J Syst Evol Microbiol 2018; 68:3430–3434
    [Google Scholar]
  43. Semenova EM, Sokolova DS, Grouzdev DS, Poltaraus AB, Vinokurova NG et al. Geobacillus proteiniphilus sp. nov., a thermophilic bacterium isolated from a high-temperature heavy oil reservoir in China. Int J Syst Evol Microbiol 2019; 69:3001–3008 [CrossRef]
    [Google Scholar]
  44. Suzuki Y, Kishigami T, Inoue K, Mizoguchi Y, Eto N et al. Bacillus thermoglucosidasius sp. nov., a new species of obligately thermophilic bacilli. Syst Appl Microbiol 1983; 4:487–495 [CrossRef][PubMed]
    [Google Scholar]
  45. Ahmad S, Scopes RK, Rees GN, Patel BKC. Saccharococcus caldoxylosilyticus sp. nov., an obligately thermophilic, xylose-utilizing, endospore-forming bacterium. Int J Syst Evol Microbiol 2000; 50:517–523
    [Google Scholar]
  46. Fortina MG, Mora D, Schumann P, Parini C, Manachini PL et al. Reclassification of Saccharococcus caldoxylosilyticus as Geobacillus caldoxylosilyticus (Ahmad, et al. 2000) comb. nov. Int J Syst Evol Microbiol 2001; 51:2063–2071
    [Google Scholar]
  47. Nicolaus B, Lama L, Esposito E, Manca MC, di Prisco G et al. 'Bacillus thermoantarcticus' sp. nov., from Mont Melbourne, Antarctica: a novel thermophilic species. Polar Biol 1996; 16:101–104
    [Google Scholar]
  48. Nicolaus B, Licia L, Enrico E, Cristina MM, Guido DP et al. Bacillus thermoantarcticus” sp. nov., from Mount Melbourne, Antarctica: a novel thermophilic species. Polar Biol 1996; 16:101–104
    [Google Scholar]
  49. Minana-Galbis D, Lore JG, Min D, Pinzo DL, Min D. Reclassification of Geobacillus pallidus (Scholz pallidus gen. nov, comb. nov). Int J Syst Evol Microbiol 2010; 60:1600–1604
    [Google Scholar]
  50. Zeikus JG. Thermophilic bacteria: ecology, physiology and technology. Enzyme Microb Technol 1979; 1:243–252 [CrossRef]
    [Google Scholar]
  51. Vieille C, Burdette DS, Zeikus JG, Gregory JZ. Thermozymes. Biotechnol Annu Rev 1996; 2:1–83 [CrossRef][PubMed]
    [Google Scholar]
  52. Ladenstein R, Antranikian G. Proteins from hyperthermophiles: stability and enzymatic catalysis close to the boiling point of water. Adv Biochem Eng Biotechnol 1998; 61:37–85
    [Google Scholar]
  53. Bruins ME, Janssen AE, Boom RM. Thermozymes and their applications: a review of recent literature and patents. Appl Biochem Biotechnol 2001; 90:155–186
    [Google Scholar]
  54. Vieille C, Zeikus GJ. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 2001; 65:1–43 [CrossRef][PubMed]
    [Google Scholar]
  55. Lasa I, Berenguer J. Thermophilic enzymes and their biotechnological potential. Microbiologia 1993; 9:77–89
    [Google Scholar]
  56. Jørgensen S, Vorgias CE, Antranikian G. Cloning, sequencing, characterization, and expression of an extracellular ␣ -amylase from the hyperthermophilic archaeon Pyrococcus furiosus in Escherichia coli and Bacillus subtilis . J Biol Chem 1997; 272:16335–16342
    [Google Scholar]
  57. Fincan SA, Enez B. Production, purification, and characterization of thermostable a-amylase from thermophilic Geobacillus stearothermophilus . Starch/Stärke 2014; 66:182–189
    [Google Scholar]
  58. Reichenberger K, Luz A, Seitl I, Fischer L. Determination of the direct activity of the maltogenic amylase from Geobacillus stearothermophilus in white bread. Food Anal. Methods 2020; 13:496–502
    [Google Scholar]
  59. Febriani R, Ulya M, Oesman F, Iqbalsyah TM. Low molecular weight alkaline thermostable α -amylase from Geobacillus sp. nov. Heliyon 2019; 5:1–7
    [Google Scholar]
  60. Ellaiah P, Srinivasulu B, Adinarayana K. A review on microbial alkaline proteases. J Sci Ind Res 2002; 61:690–704
    [Google Scholar]
  61. Li S, Yang X, Yang S, Zhu M, Wang X. Technology Prospecting on enzymes: application, marketing, and engineering. Comput Struct Biotechnol J 2012; 2:e201209017
    [Google Scholar]
  62. Rani K, Rana R, Datt S. Review on latest overview of proteases. Int J Curr Life Sci 2012; 2:12–18
    [Google Scholar]
  63. Bayoumi RA, Louboudy SS, Sidkey NM, Abd-El-Rahman MA. Production, purification, and characterization of thermostable alkaline protease under solid-state fermentation conditions for application in bio-detergent technology. Egypt J Biotechnol 2007; 25:111–129
    [Google Scholar]
  64. Thebti W, Riahi Y, Belhadj O. Purification and characterization of a new thermostable, haloalkaline, solvent stable, and detergent compatible serine protease from Geobacillus toebii strain LBT 77. Biomed Res Int 2016; 2016:1–8 [CrossRef][PubMed]
    [Google Scholar]
  65. Zhu W, Cha D, Cheng G, Peng Q, Shen P. Purification and characterization of a thermostable protease from a newly isolated Geobacillus sp. YMTC 1049. Enzyme Microb Technol 2007; 40:1592–1597 [CrossRef]
    [Google Scholar]
  66. Iqbalsyah TM, Malahayati Atikah F. Purification and partial characterization of a thermo-halostable protease produced by Geobacillus sp. strain PLS a isolated from undersea fumaroles. J Taibah Univ Sci 2019; 13:850–857
    [Google Scholar]
  67. Ke Q, Chen A, Minoda M, Yoshida H. Safety evaluation of a thermolysin enzyme produced from Geobacillus stearothermophilus . Food Chem. Toxicol 2013; 59:541–548
    [Google Scholar]
  68. Sharma D, Sharma B, Shukla AK. Biotechnological approach of microbial lipase: a review. Biotechnology 2011
    [Google Scholar]
  69. Andualema B, Gessesse A. Microbial lipases and their industrial applications: review. Biotechnology 2012
    [Google Scholar]
  70. Neena N G, Sudhirprakash B S, Jyeshtharaj B J. Studies on the Lipozyme-Catalyzed synthesis of butyl laurate. J Org Chem 1992; 57:70–78
    [Google Scholar]
  71. Jeong GT, Park DH. Lipase-Catalyzed transesterification of rapeseed oil for biodiesel production with tert-butanol. Appl Biochem Biotechnol 2008; 148:131–139
    [Google Scholar]
  72. Balan A, Ibrahim D, Rahim RA, Azzahra F, Rashid A. Purification and characterization of a thermostable lipase from Geobacillus thermodenitrificans IBRL-nra. Enzyme Res 2012; 2012:1–7
    [Google Scholar]
  73. Eow TCL, Noor R, Raja Z, Ahman AR, Asri MB et al. High-Level expression of thermostable lipase from Geobacillus sp. strain T1. Biosci Biotechnol Biochem 2004; 68:96–103
    [Google Scholar]
  74. Abdel-Fattah YR, Gaballa AA. Identification and over-expression of a thermostable lipase from Geobacillus thermoleovorans Toshki in Escherichia coli . Microbiol Res 2008; 163:13–20 [CrossRef][PubMed]
    [Google Scholar]
  75. Fotouh DMA, Bayoumi RA, Hassan MA. Production of thermoalkaliphilic lipase from Geobacillus thermoleovorans DA2 and application in leather industry. Enzyme Res 2016; 2016:1–9
    [Google Scholar]
  76. Moharana TR, Pal B, Rao NM. X-Ray structure and characterization of a thermostable lipase from Geobacillus thermoleovorans . Biochem Biophys Res Commun 20181–7
    [Google Scholar]
  77. Acharya S, Chaudhary A. Alkaline cellulase produced by a newly isolated thermophilic Aneurinibacillus thermoaerophilus WBS2 from hot spring, India. Afr J Microbiol Res 2012; 6:5453–5458
    [Google Scholar]
  78. Kuhad RC, Gupta R, Khasa YP, Singh A. Bioethanol production from Lantana camara (red SAGE): pretreatment, saccharification and fermentation. Bioresour Technol 2010; 101:8348–8354 [CrossRef][PubMed]
    [Google Scholar]
  79. Rastogi G, Bhalla A, Adhikari A, Bischoff KM, Hughes SR et al. Bioresource technology characterization of thermostable cellulases produced by Bacillus and Geobacillus strains. Bioresour Technol 2010; 101:8798–8806
    [Google Scholar]
  80. Verma R, Kumar A, Kumar S. Synthesis and characterization of cross-linked enzyme aggregates (CLEAs) of thermostable xylanase from Geobacillus thermodenitrificans X1. Process Biochem 2019; 80:72–79 [CrossRef]
    [Google Scholar]
  81. Verma D, Satyanarayana T. Cloning, expression and applicability of thermo-alkali-stable xylanase of Geobacillus thermoleovorans in generating xylooligosaccharides from agro-residues. Bioresour Technol 2012; 107:333–338 [CrossRef][PubMed]
    [Google Scholar]
  82. Saik RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R et al. Primer-Directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 1988; 239:487–491
    [Google Scholar]
  83. Gardner AF, Kelman Z. DNA polymerases in biotechnology. Front. Microbiol 2014; 5:3–5
    [Google Scholar]
  84. Eckert KA, Kunkel TA. High fidelity DNA synthesis by the Thermus aquaticus DNA polymerase; 1990; 183739–3744
  85. Lundberg KS, Shoemaker DD, Adamsb MWW, Short JM, Serge JA et al. High-Fidelity using a thermostable DNA polymerase isolated from Pyrococcus furiosus . Gene 1991; 108:1–6
    [Google Scholar]
  86. Mattila P, Korpela J, Tenkanen T, Pitkanen K, Oy F et al. Fidelity of DNA synthesis by the Thermococcus litoralis DNA polymerase — an extremely heat stable enzyme with proofreading activity. Nucleic Acids Res 1991; 19:4967–4973
    [Google Scholar]
  87. Khalaj-kondori M, Sadeghizadeh M, Khajeh K, Hossein N-M, Ali MA et al. Cloning, sequence analysis, and three-dimensional structure prediction of DNA pol I from thermophilic Geobacillus sp. MKK isolated from an Iranian hot spring. Appl Biochem Biotechnol 2007; 142:200–208
    [Google Scholar]
  88. Sandalli C, Singh K, Modak MJ, Ketkar A, Canakci S et al. A new DNA polymerase I from Geobacillus caldoxylosilyticus TK4: cloning, characterization, and mutational analysis of two aromatic residues. Appl Microbiol Biotechnol 2009; 84:105–117 [CrossRef][PubMed]
    [Google Scholar]
  89. Ma Y, Zhang B, Wang M, Ou Y, Wang J et al. Enhancement of polymerase activity of the large fragment in DNA polymerase I from Geobacillus stearothermophilus by site-directed mutagenesis at the active site. BioMed Res Int 2016; 2016:1–8
    [Google Scholar]
  90. Coker JA. Extremophiles and biotechnology: current uses and prospects. F1000 Research 2016; 5:396
    [Google Scholar]
  91. Luque R, Herrero-Davila L, Campelo JM, Clark JH, Hidalgo JM et al. Biofuels: a technological perspective. Energy Environ. Sci 2008; 1:542
    [Google Scholar]
  92. Sommer P, Georgieva T, Ahring BK. Potential for using thermophilic anaerobic bacteria for bioethanol production from hemicellulose. Biochem Soc Trans 2004; 32:283–289 [CrossRef][PubMed]
    [Google Scholar]
  93. Barnard D, Casanueva A, Tuffin M, Cowan D. Extremophiles in biofuel synthesis. Environ Technol 201037–41
    [Google Scholar]
  94. Wu S, Liu B, Zhang X. Characterization of a recombinant thermostable xylanase from deep-sea thermophilic Geobacillus sp. MT-1 in East Pacific. Appl Microbiol Biotechnol 2006; 72:1210–1216 [CrossRef][PubMed]
    [Google Scholar]
  95. Bibi Z, Ansari A, Zohra RR, Aman A, Ul Qader SA. Production of xylan degrading endo-1, 4-β-xylanase from thermophilic Geobacillus stearothermophilus KIBGE-IB29. J Radiat Res Appl Sci 2014; 7:478–485
    [Google Scholar]
  96. Fong JCN, Svenson CJ, Nakasugi K, Leong CTC, Bowman JP et al. Isolation and characterization of two novel ethanol-tolerant facultative-anaerobic thermophilic bacteria strains from waste compost. Extremophiles 2006; 10:363–372
    [Google Scholar]
  97. Lin PP, Rabe KS, Takasumi JL, Kadisch M, Arnold FH et al. Isobutanol production at elevated temperatures in thermophilic Geobacillus thermoglucosidasius . Metab. Eng 2014; 24:1–8
    [Google Scholar]
  98. Bashir Z, Sheng L, Anil A, Lali A, Minton NP et al. Engineering Geobacillus thermoglucosidasius for direct utilization of holocellulose from wheat straw. Biotechnol Biofuels 2019; 12:1–16
    [Google Scholar]
  99. Chamkha M, Mnif S, Sayadi S. Isolation of a thermophilic and halophilic tyrosol-degrading Geobacillus from a Tunisian high-temperature oil field. FEMS Microbiol Lett 2008; 283:23–29
    [Google Scholar]
  100. Smerilli M, Neureiter M, Wurz S, Haas C, Frühauf S et al. Direct fermentation of potato starch and potato residues to lactic acid by Geobacillus stearothermophilus under non-sterile conditions. J Chem Technol Biotechnol 2015; 90:648–657 [CrossRef][PubMed]
    [Google Scholar]
  101. Daas MJA, Van de Weijer AHP, De Vos WM, Van der Oost J, Van Kranenburg R. Isolation of a genetically accessible thermophilic xylan degrading bacterium from compost. Biotechnol Biofuels 2016; 9:1–13
    [Google Scholar]
  102. Mohr T, Aliyu H, Küchlin R, Polliack S, Zwick M et al. Co-Dependent hydrogen production by the facultative anaerobe Parageobacillus thermoglucosidasius. Microb Cell Fact 2018; 17:1–12
    [Google Scholar]
  103. Sooch BS, Kauldhar BS, Puri M. Isolation and polyphasic characterization of a novel hyper catalase producing thermophilic bacterium for the degradation of hydrogen peroxide. Bioprocess Biosyst Eng 2016; 39:1759–1773 [CrossRef][PubMed]
    [Google Scholar]
  104. Yang Z, Sun Q, Tan G, Zhang Q, Wang Z et al. Engineering thermophilic Geobacillus thermoglucosidasius for riboflavin production. Microb Biotechnol 20201–11 [CrossRef][PubMed]
    [Google Scholar]
  105. Hussein AH, Lisowska BK, Leak DJ. The genus Geobacillus and their biotechnological potential, advances in applied microbiology. Elsevier 2015
    [Google Scholar]
  106. Suzuki H. Peculiarities and biotechnological potential of environmental adaptation by Geobacillus species. Appl Microbiol Biotechnol 2018; 102:10425–10437 [CrossRef][PubMed]
    [Google Scholar]
  107. Iyer A, Mody K, Jha B. Biosorption of heavy metals by a marine bacterium. Mar Pollut Bull 2005; 50:340–343
    [Google Scholar]
  108. Nurba M, Kiliçarslan S, Ilhan S, Ozdag H. Biosorption of Cr 6 +, Pb 2 +, and Cu 2 + ions in industrial wastewater on Bacillus sp. Chem Eng J 2002; 85:351–355
    [Google Scholar]
  109. Özdemir S, Kilinc E, Poli A, Nicolaus B, Güven K. Biosorption of CD, Cu, Ni, Mn, and Zn from aqueous solutions by thermophilic bacteria, Geobacillus toebii sub.sp. decanicus and Geobacillus thermoleovorans sub.sp. stromboliensis: equilibrium, kinetic and thermodynamic studies. Chem Eng J 2009; 152:195–206
    [Google Scholar]
  110. Öztürk A. Removal of nickel from aqueous solution by the bacterium Bacillus thuringiensis . J Hazard Mater 2007; 147:518–523
    [Google Scholar]
  111. Madrid Y, Cámara C. Biological substrates for metal preconcentration and speciation. TrAC - Trends Anal. Chem 1997; 16:36–44
    [Google Scholar]
  112. Cánovas D, Durán C, Rodríguez N, Amils R, Lorenzo D V. Testing the limits of biological tolerance to arsenic in a fungus isolated from the river Tinto. Environ Microbiol 2003; 5:133–138
    [Google Scholar]
  113. Rajendran P, Muthukrishnan J, Gunasekaran P. Microbes in heavy metal remediation. Indian J Exp Biol 2003; 41:935–944
    [Google Scholar]
  114. Sar P, Kazy.K S, Paul D, Sarkar A. Metal bioremediation by thermophilic microorganisms, in thermophilic microbes in environmental and industrial biotechnology: biotechnology of thermophiles; 20131–956
  115. Hussein H, Ibrahim SF, Kandeel K, Moawad H. Biosorption of heavy metals from wastewater using Pseudomonas sp. Electron J Biotechnol 2004; 7:45–53
    [Google Scholar]
  116. Lade AT. Bioremediation of hydrocarbons via Geobacillus ; 2014
  117. Manchola L, Duss J. Lysinibacillus sphaericus and Geobacillus sp biodegradation of petroleum hydrocarbons and biosurfactant production. Remediation 201485–100
    [Google Scholar]
  118. Zhang J, Zhang X, Liu J, Li R, Shen B. Isolation of a thermophilic bacterium, Geobacillus sp. SH-1, capable of degrading aliphatic hydrocarbons and naphthalene simultaneously, and identification of its naphthalene degrading pathway. Bioresour Technol 2012; 124:83–89 [CrossRef][PubMed]
    [Google Scholar]
  119. Özdemir S, Kılınç E, Poli A. Biosorption of heavy metals (CD 2 +, Cu 2 +, CO 2 +, and Mn 2 +) by thermophilic bacteria, amylolyticus: equilibrium and kinetic studies. Bioremediat. J 2012; 17:86–96
    [Google Scholar]
  120. Mashburn LT, Wriston JC. Tumor inhibitory effect of L-asparaginase from Escherichia coli . Arch Biochem Biophys 1964451–452
    [Google Scholar]
  121. Jha SK, Pasrija D, Sinha RK, Singh HR, Nigam VK et al. Microbial L-asparaginase: a review on current scenario and future prospects. Int J Pharm Sci Res 2012; 3:3076–3090
    [Google Scholar]
  122. Mahajan R, Kumar V V, Rajendran V, Saran S, Ghosh PC et al. Purification and characterization of a novel and robust L-Asparaginase having low-glutaminase activity from Bacillus licheniformis: in vitro evaluation of anti- cancerous properties. PLoS One 2014.; 9:1–8
    [Google Scholar]
  123. Nadeem MS, Al-ghamdi MA, Khan JA. Studies on the recombinant production in E. coli and characterization of Pharmaceutically important thermostable L-asparaginase from Geobacillus thermodenitrificans . Pak J Zool 2019; 51:1235–1241
    [Google Scholar]
  124. Horvath P, Barrangou R. Crispr/Cas, the immune system of bacteria and archaea. Science 2010; 327:167–171
    [Google Scholar]
  125. Hatoum-Aslan A, Maniv I, Samai P, Marraffi LA. Genetic characterization of genetic characterization ofAntiplasmid immunity through a type III-A CRISPR-Cas system. J Bacteriol 2014; 196:310–317
    [Google Scholar]
  126. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007; 315:1709–1712 [CrossRef][PubMed]
    [Google Scholar]
  127. Pougach K, Semenova E, Bogdanova E, Datsenko KA, Djordjevic M et al. Transcription, processing and function of CRISPR cassettes in Escherichia coli . Mol Microbiol 2010; 77:1367–1379
    [Google Scholar]
  128. Westra ER, Staals RHJ, Gort G, Høgh S, Cruz FD et al. CRISPR-Cas systems preferentially target the leading regions of MOB F conjugative plasmids CRISPR-Cas systems preferentially target the leading regions of MOB F conjugative plasmids. RNA Biol 2013; 10:749–761
    [Google Scholar]
  129. Mahmoudian-sani M-R, Farnoosh G, Saidijam M. CRISPR genome editing and its medical applications. Biotechnol Biotechnol Equip ISSN 2018; 32:286–292
    [Google Scholar]
  130. Harrington LB, Paez-espino D, Doudna JA, Staahl BT, Chen JS et al. A thermostable Cas9 with an increased lifetime in human plasma. Nat Commun 2017; 8:1–7
    [Google Scholar]
  131. Mougiakos I, Mohanraju P, Bosma EF, Vrouwe V, Bou MF et al. Characterizing a thermostable Cas9 for bacterialgenome editing and silencing. Nat Commun 2017; 8:1–11
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000945
Loading
/content/journal/micro/10.1099/mic.0.000945
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error