1887

Abstract

The actinomycetes are Gram-positive bacteria belonging to the order within the phylum . They include members with significant economic and medical importance, for example filamentous actinomycetes such as species, which have a propensity to produce a plethora of bioactive secondary metabolites and form symbioses with higher organisms, such as plants and insects. Studying these bacteria is challenging, but also fascinating and very rewarding. As a Microbiology Society initiative, members of the actinomycete research community have been developing a Wikipedia-style resource, called ActinoBase, the purpose of which is to aid in the study of these filamentous bacteria. This review will highlight 10 publications from 2019 that have been of special interest to the ActinoBase community, covering 4 major components of actinomycete research: (i) development and regulation; (ii) specialized metabolites; (iii) ecology and host interactions; and (iv) technology and methodology.

Funding
This study was supported by the:
  • University of Strathclyde
    • Principle Award Recipient: David R. Mark
  • University of Strathclyde
    • Principle Award Recipient: Laia Castaño-Espriu
  • Engineering and Physical Sciences Research Council
    • Principle Award Recipient: Emily Addington
  • Natural Environment Research Council (Award NE/L002582/1)
    • Principle Award Recipient: Samuel M.M. Prudence
  • Edge Hill University
    • Principle Award Recipient: Linamaría Pintor-Escobar
  • Biotechnology and Biological Sciences Research Council (Award BB/M011216/1)
    • Principle Award Recipient: Alicia H. Russell
  • Biotechnology and Biological Sciences Research Council (Award BB/M011216/1)
    • Principle Award Recipient: Thomas C. McLean
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000944
2020-06-19
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/166/8/683.html?itemId=/content/journal/micro/10.1099/mic.0.000944&mimeType=html&fmt=ahah

References

  1. Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C et al. Taxonomy, physiology, and natural products of actinobacteria. Microbiol Mol Biol Rev 2016; 80:1–43 [View Article][PubMed]
    [Google Scholar]
  2. O’Neill M, Summers E. Collins (Firm : Bishopbriggs Scotland) Collins English dictionary 2015
    [Google Scholar]
  3. Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF et al. Genomics of actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 2007; 71:495–548 [View Article][PubMed]
    [Google Scholar]
  4. Mayfield CI, Williams ST, Ruddick SM, Hatfield HL. Studies on the ecology of actinomycetes in soil IV. observations on the form and growth of streptomycetes in soil. Soil Biology and Biochemistry 1972; 4:79–91 [View Article]
    [Google Scholar]
  5. van der Meij A, Worsley SF, Hutchings MI, van Wezel GP. Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiol Rev 2017; 41:392–416 [View Article][PubMed]
    [Google Scholar]
  6. van Wezel GP, Krabben P, Traag BA, Keijser BJF, Kerste R et al. Unlocking Streptomyces spp. for use as sustainable industrial production platforms by morphological engineering. Appl Environ Microbiol 2006; 72:5283–5288 [View Article][PubMed]
    [Google Scholar]
  7. Bibb MJ. Regulation of secondary metabolism in streptomycetes. Curr Opin Microbiol 2005; 8:208–215 [View Article][PubMed]
    [Google Scholar]
  8. Frey UH, Bachmann HS, Peters J, Siffert W. PCR-amplification of GC-rich regions: 'slowdown PCR'. Nat Protoc 2008; 3:1312–1317 [View Article][PubMed]
    [Google Scholar]
  9. Gomez-Escribano J, Alt S, Bibb M. Next generation sequencing of actinobacteria for the discovery of novel natural products. Mar Drugs 2016; 14:78 [View Article][PubMed]
    [Google Scholar]
  10. Hazbón MH, Rigouts L, Schito M, Ezewudo M, Kudo T et al. Mycobacterial biomaterials and resources for researchers. Pathog Dis 2018; 76:fty042 [View Article][PubMed]
    [Google Scholar]
  11. McLean TC, Lo R, Tschowri N, Hoskisson PA, Al Bassam MM et al. Sensing and responding to diverse extracellular signals: an updated analysis of the sensor kinases and response regulators of Streptomyces species. Microbiology 2019; 165:929–952 [View Article][PubMed]
    [Google Scholar]
  12. Latoscha A, Wörmann ME, Tschowri N. Nucleotide second messengers in Streptomyces . Microbiology 2019; 165:1153–1165 [View Article][PubMed]
    [Google Scholar]
  13. Gallagher KA, Schumacher MA, Bush MJ, Bibb MJ, Chandra G et al. C-Di-Gmp arms an Anti-σ to control progression of multicellular differentiation in Streptomyces . Mol Cell 2020; 77:586–599 [View Article][PubMed]
    [Google Scholar]
  14. Tschowri N, Schumacher MA, Schlimpert S, Chinnam NB, Findlay KC et al. Tetrameric c-di-GMP mediates effective transcription factor dimerization to control Streptomyces development. Cell 2014; 158:1136–1147 [View Article][PubMed]
    [Google Scholar]
  15. Liu X, Zheng G, Wang G, Jiang W, Li L et al. Overexpression of the diguanylate cyclase CdgD blocks developmental transitions and antibiotic biosynthesis in Streptomyces coelicolor. Sci China Life Sci 2019; 62:1492–1505 [View Article][PubMed]
    [Google Scholar]
  16. Xu Z, You D, Tang L-Y, Zhou Y, Ye B-C. Metabolic Engineering Strategies Based on Secondary Messengers (p)ppGpp and C-di-GMP To Increase Erythromycin Yield in Saccharopolyspora erythraea . ACS Synth Biol 2019; 8:332–345 [View Article][PubMed]
    [Google Scholar]
  17. Gehrke EJ, Zhang X, Pimentel-Elardo SM, Johnson AR, Rees CA et al. Silencing cryptic specialized metabolism in Streptomyces by the nucleoid-associated protein Lsr2. Storz G, Laub MT, Traxler MF, editors. Elife 2019; 8:e47691
    [Google Scholar]
  18. Baltz RH. Gifted microbes for genome mining and natural product discovery. J Ind Microbiol Biotechnol 2017; 44:573–588 [View Article][PubMed]
    [Google Scholar]
  19. Fernández-Moreno MA, Caballero JL, Hopwood DA, Malpartida F. The act cluster contains regulatory and antibiotic export genes, direct targets for translational control by the bldA tRNA gene of Streptomyces. Cell 1991; 66:769–780 [View Article][PubMed]
    [Google Scholar]
  20. Onaka H, Nakagawa T, Horinouchi S. Involvement of two A-factor receptor homologues in Streptomyces coelicolor A3(2) in the regulation of secondary metabolism and morphogenesis. Mol Microbiol 1998; 28:743–753 [View Article][PubMed]
    [Google Scholar]
  21. McLean TC, Wilkinson B, Hutchings MI, Devine R. Dissolution of the disparate: co-ordinate regulation in antibiotic biosynthesis. Antibiotics 2019; 8:83 [View Article][PubMed]
    [Google Scholar]
  22. McLean TC, Hoskisson PA, Seipke RF. Coordinate regulation of antimycin and candicidin biosynthesis. mSphere 2016; 1:e00305–00316 [View Article][PubMed]
    [Google Scholar]
  23. Gordon BRG, Imperial R, Wang L, Navarre WW, Liu J. Lsr2 of Mycobacterium represents a novel class of H-NS-like proteins. J Bacteriol 2008; 190:7052–7059 [View Article][PubMed]
    [Google Scholar]
  24. Deng L, Wang R, Wang G, Liu M, Liao G et al. Targeted isolation of sulfur-containing metabolites from Lsr2-deletion mutant strain of Streptomyces roseosporus . RSC Adv 2017; 7:37771–37777 [View Article]
    [Google Scholar]
  25. Bentley SD, Chater KF, Cerdeño-Tárraga A-M, Challis GL, Thomson NR et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 2002; 417:141–147 [View Article][PubMed]
    [Google Scholar]
  26. Oliynyk M, Samborskyy M, Lester JB, Mironenko T, Scott N et al. Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338. Nat Biotechnol 2007; 25:447–453 [View Article][PubMed]
    [Google Scholar]
  27. Silver LL. Challenges of antibacterial discovery. Clin Microbiol Rev 2011; 24:71–109 [View Article][PubMed]
    [Google Scholar]
  28. Shang Z, Winter JM, Kauffman CA, Yang I, Fenical W. Salinipeptins: Integrated Genomic and Chemical Approaches Reveal Unusual d-Amino Acid-Containing Ribosomally Synthesized and Post-Translationally Modified Peptides (RiPPs) from a Great Salt Lake Streptomyces sp. ACS Chem Biol 2019; 14:415–425 [View Article][PubMed]
    [Google Scholar]
  29. Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep 2013; 30:108–160 [View Article][PubMed]
    [Google Scholar]
  30. Tietz JI, Schwalen CJ, Patel PS, Maxson T, Blair PM et al. A new genome-mining tool redefines the LASSO peptide biosynthetic landscape. Nat Chem Biol 2017; 13:470–478 [View Article][PubMed]
    [Google Scholar]
  31. Santos-Aberturas J, Chandra G, Frattaruolo L, Lacret R, Pham TH et al. Uncovering the unexplored diversity of thioamidated ribosomal peptides in actinobacteria using the Ripper genome mining tool. Nucleic Acids Res 2019; 47:4624–4637 [View Article][PubMed]
    [Google Scholar]
  32. Minami Y, Yoshida K, Azuma R, Urakawa A, Kawauchi T et al. Structure of cypemycin, a new peptide antibiotic. Tetrahedron Lett 1994; 35:8001–8004 [View Article]
    [Google Scholar]
  33. Claesen J, Bibb MJ. Biosynthesis and regulation of grisemycin, a new member of the linaridin family of ribosomally synthesized peptides produced by Streptomyces griseus IFO 13350. J Bacteriol 2011; 193:2510–2516 [View Article][PubMed]
    [Google Scholar]
  34. Rateb ME, Zhai Y, Ehrner E, Rath CM, Wang X et al. Legonaridin, a new member of linaridin RiPP from a Ghanaian Streptomyces isolate. Org Biomol Chem 2015; 13:9585–9592 [View Article][PubMed]
    [Google Scholar]
  35. Claesen J, Bibb M. Genome mining and genetic analysis of cypemycin biosynthesis reveal an unusual class of posttranslationally modified peptides. Proc Natl Acad Sci U S A 2010; 107:16297–16302 [View Article][PubMed]
    [Google Scholar]
  36. McHugh RE, O'Boyle N, Connolly JPR, Hoskisson PA, Roe AJ. Characterization of the Mode of Action of Aurodox, a Type III Secretion System Inhibitor from Streptomyces goldiniensis . Infect Immun 2019; 87:e00595–18 [View Article][PubMed]
    [Google Scholar]
  37. Vogeley L, Palm GJ, Mesters JR, Hilgenfeld R. Conformational change of elongation factor Tu (EF-Tu) induced by antibiotic binding. crystal structure of the complex between EF-Tu.GDP and aurodox. J Biol Chem 2001; 276:17149–17155 [View Article][PubMed]
    [Google Scholar]
  38. Kimura K, Iwatsuki M, Nagai T, Matsumoto A, Takahashi Y et al. A small-molecule inhibitor of the bacterial type III secretion system protects against in vivo infection with Citrobacter rodentium . J Antibiot 2011; 64:197–203 [View Article][PubMed]
    [Google Scholar]
  39. O’Neill J. Review on antimicrobial resistance. antimicrobial resistance: tackling a crisis for the health and wealth of nations; 2014; 4
  40. Waglechner N, McArthur AG, Wright GD. Phylogenetic reconciliation reveals the natural history of glycopeptide antibiotic biosynthesis and resistance. Nat Microbiol 2019; 4:1862–1871 [View Article][PubMed]
    [Google Scholar]
  41. Bansal AK. Bioinformatics in microbial biotechnology--a mini review. Microb Cell Fact 2005; 4:19 [View Article][PubMed]
    [Google Scholar]
  42. Binda E, Marinelli F, Marcone GL. Old and new glycopeptide antibiotics: action and resistance. Antibiotics 2014; 3:572–594 [View Article][PubMed]
    [Google Scholar]
  43. Yim G, Thaker MN, Koteva K, Wright G. Glycopeptide antibiotic biosynthesis. J Antibiot 2014; 67:31–41 [View Article][PubMed]
    [Google Scholar]
  44. Joynt R, Seipke RF. A phylogenetic and evolutionary analysis of antimycin biosynthesis. Microbiology 2018; 164:28–39 [View Article][PubMed]
    [Google Scholar]
  45. Medema MH, Cimermancic P, Sali A, Takano E, Fischbach MA. A systematic computational analysis of biosynthetic gene cluster evolution: lessons for engineering biosynthesis. PLoS Comput Biol 2014; 10:e1004016 [View Article][PubMed]
    [Google Scholar]
  46. Chevrette MG, Currie CR. Emerging evolutionary paradigms in antibiotic discovery. J Ind Microbiol Biotechnol 2019; 46:257–271 [View Article][PubMed]
    [Google Scholar]
  47. Millán-Aguiñaga N, Soldatou S, Brozio S, Munnoch JT, Howe J et al. Awakening ancient polar Actinobacteria: diversity, evolution and specialized metabolite potential. Microbiology 2019; 165:1169–1180 [View Article][PubMed]
    [Google Scholar]
  48. Kalyani BS, Krishna PS, Sreenivasulu K. Screening and identification of novel isolate Streptomyces sp., NLKPB45 from Nellore costal region for its biomedical applications. Saudi J Biol Sci 2019; 26:1655–1660 [View Article][PubMed]
    [Google Scholar]
  49. Benhadj M, Gacemi-Kirane D, Menasria T, Guebla K, Ahmane Z. Screening of rare actinomycetes isolated from natural wetland ecosystem (Fetzara lake, northeastern Algeria) for hydrolytic enzymes and antimicrobial activities. Journal of King Saud University - Science 2019; 31:706–712 [View Article]
    [Google Scholar]
  50. Carro L, Castro JF, Razmilic V, Nouioui I, Pan C et al. Uncovering the potential of novel micromonosporae isolated from an extreme hyper-arid Atacama desert soil. Sci Rep 2019; 9:4678 [View Article][PubMed]
    [Google Scholar]
  51. Long Y, Jiang J, Hu X, Zhou J, Hu J et al. Actinobacterial community in Shuanghe cave using culture-dependent and -independent approaches. World J Microbiol Biotechnol 2019; 35:153 [View Article][PubMed]
    [Google Scholar]
  52. Srivastava N, Nandi I, Ibeyaima A, Gupta S, Sarethy IP. Microbial diversity of a Himalayan forest and characterization of rare actinomycetes for antimicrobial compounds. 3 Biotech 2019; 9:27 [View Article][PubMed]
    [Google Scholar]
  53. Cambronero-Heinrichs JC, Matarrita-Carranza B, Murillo-Cruz C, Araya-Valverde E, Chavarría M et al. Phylogenetic analyses of antibiotic-producing Streptomyces sp. isolates obtained from the stingless-bee Tetragonisca angustula (Apidae: Meliponini). Microbiology 2019; 165:292–301 [View Article][PubMed]
    [Google Scholar]
  54. Chevrette MG, Carlson CM, Ortega HE, Thomas C, Ananiev GE et al. The antimicrobial potential of Streptomyces from insect microbiomes. Nat Commun 2019; 10:516 [View Article][PubMed]
    [Google Scholar]
  55. Sakoda S, Aisu K, Imagami H, Matsuda Y. Comparison of Actinomycete Community Composition on the Surface and Inside of Japanese Black Pine (Pinus thunbergii) Tree Roots Colonized by the Ectomycorrhizal Fungus Cenococcum geophilum . Microb Ecol 2019; 77:370–379 [View Article][PubMed]
    [Google Scholar]
  56. Liotti RG, da Silva Figueiredo MI, Soares MA. Streptomyces griseocarneus R132 controls phytopathogens and promotes growth of pepper (Capsicum annuum). Biol Control 2019; 138:104065 [View Article]
    [Google Scholar]
  57. Newitt JT, Prudence SMM, Hutchings MI, Worsley SF. Biocontrol of cereal crop diseases using streptomycetes. Pathogens 2019; 8:78 [View Article][PubMed]
    [Google Scholar]
  58. Bienhold C, Boetius A, Ramette A. The energy-diversity relationship of complex bacterial communities in Arctic deep-sea sediments. Isme J 2012; 6:724–732 [View Article][PubMed]
    [Google Scholar]
  59. Zhang D-F, Jiang Z, Li L, Liu B-B, Zhang X-M et al. Pseudonocardia sediminis sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2014; 64:745–750 [View Article][PubMed]
    [Google Scholar]
  60. Caldera EJ, Chevrette MG, McDonald BR, Currie CR. Local adaptation of bacterial symbionts within a geographic mosaic of antibiotic coevolution. Appl Environ Microbiol 2019; 85:e01580–19 [View Article][PubMed]
    [Google Scholar]
  61. Barke J, Seipke RF, Grüschow S, Heavens D, Drou N et al. A mixed community of actinomycetes produce multiple antibiotics for the fungus farming ant Acromyrmex octospinosus . BMC Biol 2010; 8:109 [View Article][PubMed]
    [Google Scholar]
  62. Qin Z, Munnoch JT, Devine R, Holmes NA, Seipke RF et al. Formicamycins, antibacterial polyketides produced by Streptomyces formicae isolated from African Tetraponera plant-ants. Chem Sci 2017; 8:3218–3227 [View Article][PubMed]
    [Google Scholar]
  63. Yek SH, Boomsma JJ, Poulsen M. Towards a better understanding of the evolution of specialized parasites of fungus-growing ant crops. Psyche 2012; 2012:239392–10 [View Article]
    [Google Scholar]
  64. Poulsen M, Cafaro MJ, Erhardt DP, Little AEF, Gerardo NM et al. Variation in Pseudonocardia antibiotic defence helps govern parasite-induced morbidity in Acromyrmex leaf-cutting ants. Environ Microbiol Rep 2010; 2:534–540 [View Article][PubMed]
    [Google Scholar]
  65. Kim D-R, Cho G, Jeon C-W, Weller DM, Thomashow LS et al. A mutualistic interaction between Streptomyces bacteria, strawberry plants and pollinating bees. Nat Commun 2019; 10:4802 [View Article][PubMed]
    [Google Scholar]
  66. Tokala RK, Strap JL, Jung CM, Crawford DL, Salove MH et al. Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl Environ Microbiol 2002; 68:2161–2171 [View Article][PubMed]
    [Google Scholar]
  67. Kaltenpoth M, Göttler W, Herzner G, Strohm E. Symbiotic bacteria protect wasp larvae from fungal infestation. Curr Biol 2005; 15:475–479 [View Article][PubMed]
    [Google Scholar]
  68. Yuan WM, Crawford DL. Characterization of streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots. Appl Environ Microbiol 1995; 61:3119–3128 [View Article][PubMed]
    [Google Scholar]
  69. Haeder S, Wirth R, Herz H, Spiteller D. Candicidin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic fungus Escovopsis . Proc Natl Acad Sci U S A 2009; 106:4742–4746 [View Article][PubMed]
    [Google Scholar]
  70. Bulgarelli D, Rott M, Schlaeppi K, Ver Loren van Themaat E, Ahmadinejad N et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 2012; 488:91–95 [View Article][PubMed]
    [Google Scholar]
  71. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O et al. Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 2010; 25:345–353 [View Article][PubMed]
    [Google Scholar]
  72. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA. Practical Streptomyces Genetics 529 John Innes Centre Ltd; 2000
    [Google Scholar]
  73. Jain M, Olsen HE, Paten B, Akeson M. The Oxford nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol 2016; 17:239 [View Article][PubMed]
    [Google Scholar]
  74. Cobb RE, Wang Y, Zhao H. High-Efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth Biol 2015; 4:723–728 [View Article][PubMed]
    [Google Scholar]
  75. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [View Article][PubMed]
    [Google Scholar]
  76. Ziemert N, Alanjary M, Weber T. The evolution of genome mining in microbes - a review. Nat Prod Rep 2016; 33:988–1005 [View Article][PubMed]
    [Google Scholar]
  77. Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P et al. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res 2011; 39:W339–W346 [View Article][PubMed]
    [Google Scholar]
  78. Blin K, Wolf T, Chevrette MG, Lu X, Schwalen CJ et al. antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res 2017; 45:W36–W41 [View Article][PubMed]
    [Google Scholar]
  79. Blin K, Pedersen LE, Weber T, Lee SY. CRISPy-web: an online resource to design sgRNAs for CRISPR applications. Synth Syst Biotechnol 2016; 1:118–121 [View Article][PubMed]
    [Google Scholar]
  80. Alanjary M, Kronmiller B, Adamek M, Blin K, Weber T et al. The antibiotic resistant target seeker (arts), an exploration engine for antibiotic cluster prioritization and novel drug target discovery. Nucleic Acids Res 2017; 45:W42–W48 [View Article][PubMed]
    [Google Scholar]
  81. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 2016; 44:D279–D285 [View Article][PubMed]
    [Google Scholar]
  82. Tong Y, Whitford CM, Robertsen HL, Blin K, Jørgensen TS et al. Highly efficient DSB-free base editing for streptomycetes with CRISPR-BEST. Proc Natl Acad Sci U S A 2019; 116:20366–20375 [View Article][PubMed]
    [Google Scholar]
  83. Gust B, Challis GL, Fowler K, Kieser T, Chater KF. PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci U S A 2003; 100:1541–1546 [View Article][PubMed]
    [Google Scholar]
  84. Alberti F, Corre C. Editing streptomycete genomes in the CRISPR/Cas9 age. Nat Prod Rep 2019; 36:1237–1248 [View Article][PubMed]
    [Google Scholar]
  85. Volff JN, Altenbuchner J. Genetic instability of the Streptomyces chromosome. Mol Microbiol 1998; 27:239–246 [View Article][PubMed]
    [Google Scholar]
  86. Kuscu C, Parlak M, Tufan T, Yang J, Szlachta K et al. CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations. Nat Methods 2017; 14:710–712 [View Article][PubMed]
    [Google Scholar]
  87. Jiang F, Taylor DW, Chen JS, Kornfeld JE, Zhou K et al. Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science 2016; 351:867–871 [View Article][PubMed]
    [Google Scholar]
  88. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 2016; 533:420–424 [View Article][PubMed]
    [Google Scholar]
  89. Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 2017; 551:464–471 [View Article][PubMed]
    [Google Scholar]
  90. Haurwitz RE, Jinek M, Wiedenheft B, Zhou K, Doudna JA. Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science 2010; 329:1355–1358 [View Article][PubMed]
    [Google Scholar]
  91. Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 1995; 59:143–169 [View Article][PubMed]
    [Google Scholar]
  92. Nichols D, Cahoon N, Trakhtenberg EM, Pham L, Mehta A et al. Use of ichip for high-throughput in situ cultivation of "uncultivable" microbial species. Appl Environ Microbiol 2010; 76:2445–2450 [View Article][PubMed]
    [Google Scholar]
  93. Schloss PD, Handelsman J. Metagenomics for studying unculturable microorganisms: cutting the Gordian knot. Genome Biol 2005; 6:229 [View Article][PubMed]
    [Google Scholar]
  94. Cao L, Gurevich A, Alexander KL, Naman CB, Leão T et al. MetaMiner: a scalable Peptidogenomics approach for discovery of ribosomal peptide natural products with blind modifications from microbial communities. Cell Syst 2019; 9:600–608 [View Article][PubMed]
    [Google Scholar]
  95. Komatsu M, Komatsu K, Koiwai H, Yamada Y, Kozone I et al. Engineered Streptomyces avermitilis host for heterologous expression of biosynthetic gene cluster for secondary metabolites. ACS Synth Biol 2013; 2:384–396 [View Article][PubMed]
    [Google Scholar]
  96. Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N et al. Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nat Biotechnol 2016; 34:828–837 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000944
Loading
/content/journal/micro/10.1099/mic.0.000944
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error