1887

Abstract

Bacterial lipoproteins are secreted proteins that are post-translationally lipidated. Following synthesis, preprolipoproteins are transported through the cytoplasmic membrane via the Sec or Tat translocon. As they exit the transport machinery, they are recognized by a phosphatidylglycerol::prolipoprotein diacylglyceryl transferase (Lgt), which converts them to prolipoproteins by adding a diacylglyceryl group to the sulfhydryl side chain of the invariant Cys residue. Lipoprotein signal peptidase (LspA or signal peptidase II) subsequently cleaves the signal peptide, liberating the α-amino group of Cys, which can eventually be further modified. Here, we identified the and genes from and found that they are unique but not essential. We found that Lgt is necessary for the acylation and membrane anchoring of two model lipoproteins expressed in this species: MusE, a maltose-binding lipoprotein, and LppX, a lipoprotein. However, Lgt is not required for these proteins’ signal peptide cleavage, or for LppX glycosylation. Taken together, these data show that in the association of some lipoproteins with membranes through the covalent attachment of a lipid moiety is not essential for further post-translational modification.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000937
2020-06-03
2020-09-20
Loading full text...

Full text loading...

References

  1. Zückert WR. Secretion of bacterial lipoproteins: through the cytoplasmic membrane, the periplasm and beyond. Biochim Biophys Acta 2014; 1843:1509–1516 [CrossRef][PubMed]
    [Google Scholar]
  2. Buddelmeijer N. The molecular mechanism of bacterial lipoprotein modification--how, when and why?. FEMS Microbiol Rev 2015; 39:246–261 [CrossRef][PubMed]
    [Google Scholar]
  3. Kovacs-Simon A, Titball RW, Michell SL. Lipoproteins of bacterial pathogens. Infect Immun 2011; 79:548–561 [CrossRef][PubMed]
    [Google Scholar]
  4. Reffuveille F, Leneveu C, Chevalier S, Auffray Y, Rincé A. Lipoproteins of Enterococcus faecalis: bioinformatic identification, expression analysis and relation to virulence. Microbiology 2011; 157:3001–3013 [CrossRef][PubMed]
    [Google Scholar]
  5. Rezwan M, Grau T, Tschumi A, Sander P. Lipoprotein synthesis in mycobacteria. Microbiology 2007; 153:652–658 [CrossRef][PubMed]
    [Google Scholar]
  6. Sutcliffe IC, Harrington DJ. Lipoproteins of Mycobacterium tuberculosis: an abundant and functionally diverse class of cell envelope components. FEMS Microbiol Rev 2004; 28:645–659 [CrossRef][PubMed]
    [Google Scholar]
  7. Szewczyk J, Collet J-F. The journey of lipoproteins through the cell: one birthplace, multiple destinations. Adv Microb Physiol 2016; 69:1–50 [CrossRef][PubMed]
    [Google Scholar]
  8. Okuda S, Tokuda H. Lipoprotein sorting in bacteria. Annu Rev Microbiol 2011; 65:239–259 [CrossRef][PubMed]
    [Google Scholar]
  9. Nakayama H, Kurokawa K, Lee BL. Lipoproteins in bacteria: structures and biosynthetic pathways. Febs J 2012; 279:4247–4268 [CrossRef][PubMed]
    [Google Scholar]
  10. Foster J, Ganatra M, Kamal I, Ware J, Makarova K et al. The Wolbachia genome of Brugia malayi: endosymbiont evolution within a human pathogenic nematode. PLoS Biol 2005; 3:e121 [CrossRef][PubMed]
    [Google Scholar]
  11. Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 2000; 407:81–86 [CrossRef][PubMed]
    [Google Scholar]
  12. Weyer KA, Schaefer W, Lottspeich F, Michel H. Cytochrome subunit of the photosynthetic reaction center from Rhodopseudomonas viridis is a lipoprotein. Biochemistry 1987; 26:2909–2914 [CrossRef]
    [Google Scholar]
  13. Inukai M, Takeuchi M, Shimizu K, Arai M. Mechanism of action of globomycin. J Antibiot 1978; 31:1203–1205 [CrossRef][PubMed]
    [Google Scholar]
  14. McLeod SM, Fleming PR, MacCormack K, McLaughlin RE, Whiteaker JD et al. Small-Molecule inhibitors of gram-negative lipoprotein trafficking discovered by phenotypic screening. J Bacteriol 2015; 197:1075–1082 [CrossRef][PubMed]
    [Google Scholar]
  15. Xiao Y, Gerth K, Müller R, Wall D. Myxobacterium-produced antibiotic TA (myxovirescin) inhibits type II signal peptidase. Antimicrob Agents Chemother 2012; 56:2014–2021 [CrossRef][PubMed]
    [Google Scholar]
  16. LoVullo ED, Wright LF, Isabella V, Huntley JF, Pavelka MS. Revisiting the Gram-negative lipoprotein paradigm. J Bacteriol 2015; 197:1705–1715 [CrossRef]
    [Google Scholar]
  17. Gwin CM, Prakash N, Christian Belisario J, Haider L, Rosen ML et al. The apolipoprotein N-acyl transferase Lnt is dispensable for growth in Acinetobacter species. Microbiology 2018; 164:1547–1556 [CrossRef]
    [Google Scholar]
  18. Asanuma M, Kurokawa K, Ichikawa R, Ryu K-H, Chae J-H et al. Structural evidence of α-aminoacylated lipoproteins of Staphylococcus aureus . Febs J 2011; 278:716–728 [CrossRef]
    [Google Scholar]
  19. Serebryakova MV, Demina IA, Galyamina MA, Kondratov IG, Ladygina VG et al. The Acylation State of Surface Lipoproteins of Mollicute Acholeplasma laidlawii . J Biol Chem 2011; 286:22769–22776 [CrossRef]
    [Google Scholar]
  20. Kurokawa K, Ryu K-H, Ichikawa R, Masuda A, Kim M-S et al. Novel bacterial lipoprotein structures conserved in low-GC content gram-positive bacteria are recognized by Toll-like receptor 2. J Biol Chem 2012; 287:13170–13181 [CrossRef]
    [Google Scholar]
  21. Kurokawa K, Kim M-S, Ichikawa R, Ryu K-H, Dohmae N et al. Environment-mediated accumulation of diacyl lipoproteins over their triacyl counterparts in Staphylococcus aureus . J Bacteriol 2012; 194:3299–3306 [CrossRef]
    [Google Scholar]
  22. Baumgärtner M, Kärst U, Gerstel B, Loessner M, Wehland J et al. Inactivation of lgt allows systematic characterization of lipoproteins from Listeria monocytogenes . J Bacteriol 2007; 189:313–324 [CrossRef][PubMed]
    [Google Scholar]
  23. Chimalapati S, Cohen JM, Camberlein E, MacDonald N, Durmort C et al. Effects of deletion of the Streptococcus pneumoniae lipoprotein diacylglyceryl transferase gene lgt on ABC transporter function and on growth in vivo . PLoS One 2012; 7:e41393 [CrossRef]
    [Google Scholar]
  24. Denham EL, Ward PN, Leigh JA. In the absence of Lgt, lipoproteins are shed from Streptococcus uberis independently of Lsp. Microbiology 2009; 155:134–141 [CrossRef]
    [Google Scholar]
  25. Leskelä S, Wahlström E, Kontinen VP, Sarvas M. Lipid modification of prelipoproteins is dispensable for growth but essential for efficient protein secretion in Bacillus subtilis: characterization of the lgt gene. Mol Microbiol 1999; 31:1075–1085 [CrossRef]
    [Google Scholar]
  26. Hutchings MI, Palmer T, Harrington DJ, Sutcliffe IC. Lipoprotein biogenesis in Gram-positive bacteria: knowing when to hold’em, knowing when to fold’em. Trends Microbiol 2009; 17:13–21 [CrossRef]
    [Google Scholar]
  27. Pribyl T, Moche M, Dreisbach A, Bijlsma JJE, Saleh M et al. Influence of impaired lipoprotein biogenesis on surface and exoproteome of Streptococcus pneumoniae . J Proteome Res 2014; 13:650–667 [CrossRef]
    [Google Scholar]
  28. Saleh M, Bartual SG, Abdullah MR, Jensch I, Asmat TM et al. Molecular architecture of Streptococcus pneumoniae surface thioredoxin-fold lipoproteins crucial for extracellular oxidative stress resistance and maintenance of virulence. EMBO Mol. Med 2013; 5:1852–1870
    [Google Scholar]
  29. Brülle JK, Tschumi A, Sander P. Lipoproteins of slow-growing mycobacteria carry three fatty acids and are N-acylated by apolipoprotein N-acyltransferase BCG_2070c. BMC Microbiol 2013; 13:223 [CrossRef]
    [Google Scholar]
  30. Mohiman N, Argentini M, Batt SM, Cornu D, Masi M et al. The PPM operon is essential for acylation and glycosylation of lipoproteins in Corynebacterium glutamicum . PLoS One 2012; 7:e46225 [CrossRef]
    [Google Scholar]
  31. Tschumi A, Nai C, Auchli Y, Hunziker P, Gehrig P et al. Identification of apolipoprotein N-acyltransferase (Lnt) in mycobacteria. J Biol Chem 2009; 284:27146–27156 [CrossRef]
    [Google Scholar]
  32. Widdick DA, Hicks MG, Thompson BJ, Tschumi A, Chandra G et al. Dissecting the complete lipoprotein biogenesis pathway in Streptomyces scabies . Mol Microbiol 2011; 80:1395–1412 [CrossRef]
    [Google Scholar]
  33. Thompson BJ, Widdick DA, Hicks MG, Chandra G, Sutcliffe IC et al. Investigating lipoprotein biogenesis and function in the model Gram-positive bacterium Streptomyces coelicolor . Mol Microbiol 2010; 77:943–957
    [Google Scholar]
  34. Gullón S, Arranz EIG, Mellado RP. Transcriptional characterisation of the negative effect exerted by a deficiency in type II signal peptidase on extracellular protein secretion in Streptomyces lividans . Appl Microbiol Biotechnol 2013; 97:10069–10080 [CrossRef]
    [Google Scholar]
  35. Zhang YJ, Ioerger TR, Huttenhower C, Long JE, Sassetti CM et al. Global assessment of genomic regions required for growth in Mycobacterium tuberculosis . PLoS Pathog 2012; 8:e1002946 [CrossRef]
    [Google Scholar]
  36. Sander P, Rezwan M, Walker B, Rampini SK, Kroppenstedt RM et al. Lipoprotein processing is required for virulence of Mycobacterium tuberculosis†. Mol Microbiol 2004; 52:1543–1552 [CrossRef]
    [Google Scholar]
  37. Tschumi A, Grau T, Albrecht D, Rezwan M, Antelmann H et al. Functional analyses of mycobacterial lipoprotein diacylglyceryl transferase and comparative secretome analysis of a mycobacterial lgt mutant. J Bacteriol 2012; 194:3938–3949 [CrossRef]
    [Google Scholar]
  38. Feltcher ME, Gibbons HS, Ligon LS, Braunstein M. Protein export by the mycobacterial SecA2 system is determined by the preprotein mature domain. J Bacteriol 2013; 195:672–681 [CrossRef]
    [Google Scholar]
  39. Eggeling L, Reyes O. Eggeling L, Botts M. (editors) Handbook of Corynebacterium Glutamicum Boca Raton, FL: CRC Press, Inc., Taylor Francis Group; 2005 pp 535–566
    [Google Scholar]
  40. Bonamy C, Guyonvarch A, Reyes O, David F, Leblon G. Interspecies electro-transformation in Corynebacteria. FEMS Microbiol Lett 1990; 66:263–269 [CrossRef]
    [Google Scholar]
  41. Dusch N, Pühler A, Kalinowski Jörn. Expression of the Corynebacterium glutamicum panD gene encoding l-Aspartate-α-decarboxylase leads to pantothenate overproduction in Escherichia coli . Appl Environ Microbiol 1999; 65:1530–1539 [CrossRef]
    [Google Scholar]
  42. Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G et al. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum . Gene 1994; 145:69–73 [CrossRef]
    [Google Scholar]
  43. Heckman KL, Pease LR. Gene splicing and mutagenesis by PCR-driven overlap extension. Nat Protoc 2007; 2:924–932 [CrossRef]
    [Google Scholar]
  44. Pailler J, Aucher W, Pires M, Buddelmeijer N. Phosphatidylglycerol::prolipoprotein diacylglyceryl transferase (Lgt) of Escherichia coli has seven transmembrane segments, and its essential residus are embedded in the membrane. J Bacteriol 2012; 194:2142–2151 [CrossRef]
    [Google Scholar]
  45. Ujihara T, Sakurai I, Mizusawa N, Wada H. A method for analyzing lipid-modified proteins with mass spectrometry. Anal Biochem 2008; 374:429–431 [CrossRef]
    [Google Scholar]
  46. Ikeda M, Nakagawa S. The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 2003; 62:99–109 [CrossRef]
    [Google Scholar]
  47. Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M et al. The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol 2003; 104:5–25 [CrossRef]
    [Google Scholar]
  48. Gibson KJC, Eggeling L, Maughan WN, Krumbach K, Gurcha SS et al. Disruption of Cg-Ppm1, a polyprenyl monophosphomannose synthase, and the generation of lipoglycan-less mutants in Corynebacterium glutamicum. J Biol Chem 2003; 278:40842–40850 [CrossRef]
    [Google Scholar]
  49. Henrich A, Kuhlmann N, Eck AW, Krämer R, Seibold GM. Maltose uptake by the novel ABC transport system MusEFGK2I causes increased expression of ptsG in Corynebacterium glutamicum . J Bacteriol 2013; 195:2573–2584 [CrossRef]
    [Google Scholar]
  50. Vidal-Ingigliardi D, Lewenza S, Buddelmeijer N. Identification of essential residues in apolipoprotein N-acyl transferase, a member of the CN hydrolase family. J Bacteriol 2007; 189:4456–4464 [CrossRef]
    [Google Scholar]
  51. Sulzenbacher G, Canaan S, Bordat Y, Neyrolles O, Stadthagen G et al. LppX is a lipoprotein required for the translocation of phthiocerol dimycocerosates to the surface of Mycobacterium tuberculosis . Embo J 2006; 25:1436–1444 [CrossRef]
    [Google Scholar]
  52. Lefèvre P, Denis O, De Wit L, Tanghe A, Vandenbussche P et al. Cloning of the gene encoding a 22-kilodalton cell surface antigen of Mycobacterium bovisBCG and analysis of its potential for DNA vaccination against tuberculosis. Infect Immun 2000; 68:1040–1047 [CrossRef]
    [Google Scholar]
  53. Målen H, Berven FS, Fladmark KE, Wiker HG. Comprehensive analysis of exported proteins from Mycobacterium tuberculosis H37Rv. Proteomics 2007; 7:1702–1718 [CrossRef]
    [Google Scholar]
  54. Mawuenyega KG, Forst CV, Dobos KM, Belisle JT, Chen J et al. Mycobacterium tuberculosis functional network analysis by global subcellular protein profiling. Mol Biol Cell 2005; 16:396–404 [CrossRef]
    [Google Scholar]
  55. González-Zamorano M, Mendoza-Hernández G, Xolalpa W, Parada C, Vallecillo AJ et al. Mycobacterium tuberculosis glycoproteomics based on ConA-lectin affinity capture of mannosylated proteins. J Proteome Res 2009; 8:721–733 [CrossRef]
    [Google Scholar]
  56. Córdova-Dávalos LE, Espitia C, González-Cerón G, Arreguín-Espinosa R, Soberón-Chávez G et al. Lnt1) is dispensable for protein O-mannosylation by Streptomyces coelicolor . FEMS Microbiol. Lett 2014; 350:72–82
    [Google Scholar]
  57. Chimalakonda G, Ruiz N, Chng S-S, Garner RA, Kahne D et al. Lipoprotein LptE is required for the assembly of LptD by the -barrel assembly machine in the outer membrane of Escherichia coli . Proc Natl Acad Sci USA 2011; 108:2492–2497 [CrossRef]
    [Google Scholar]
  58. Hagan CL, Silhavy TJ, Kahne D. β-Barrel membrane protein assembly by the Bam complex. Annu Rev Biochem 2011; 80:189–210 [CrossRef]
    [Google Scholar]
  59. Rainczuk AK, Yamaryo-Botte Y, Brammananth R, Stinear TP, Seemann T et al. The lipoprotein LpqW is essential for the mannosylation of periplasmic glycolipids in corynebacteria. J Biol Chem 2012; 287:42726–42738 [CrossRef]
    [Google Scholar]
  60. Amin AG, Goude R, Shi L, Zhang J, Chatterjee D et al. EmbA is an essential arabinosyltransferase in Mycobacterium tuberculosis . Microbiology 2008; 154:240–248 [CrossRef]
    [Google Scholar]
  61. Pawelczyk J, Brzostek A, Kremer L, Dziadek B, Rumijowska-Galewicz A et al. AccD6, a key carboxyltransferase essential for mycolic acid synthesis in Mycobacterium tuberculosis, is dispensable in a nonpathogenic strain. J Bacteriol 2011; 193:6960–6972 [CrossRef]
    [Google Scholar]
  62. Liu C-F, Tonini L, Malaga W, Beau M, Stella A et al. Bacterial protein-O-mannosylating enzyme is crucial for virulence of Mycobacterium tuberculosis . Proc Natl Acad Sci USA 2013; 110:6560–6565 [CrossRef]
    [Google Scholar]
  63. Sassetti CM, Rubin EJ. Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci U S A 2003; 100:12989–12994 [CrossRef]
    [Google Scholar]
  64. Kovacevic S, Anderson D, Morita YS, Patterson J, Haites R et al. Identification of a novel protein with a role in lipoarabinomannan biosynthesis in mycobacteria. J Biol Chem 2006; 281:9011–9017 [CrossRef]
    [Google Scholar]
  65. Kempf B, Gade J, Bremer E. Lipoprotein from the osmoregulated ABC transport system OpuA of Bacillus subtilis: purification of the glycine betaine binding protein and characterization of a functional lipidless mutant. J Bacteriol 1997; 179:6213–6220 [CrossRef]
    [Google Scholar]
  66. HY Q, Sankaran K, HC W. Structure-function relationship of bacterial prolipoprotein diacylglyceryl transferase: functionally significant conserved regions. J Bacteriol 1995; 177:6820–6824
    [Google Scholar]
  67. Vidal-Ingigliardi D, Lewenza S, Buddelmeijer N. Identification of essential residues in apolipoprotein N-acyl transferase, a member of the CN hydrolase family. J Bacteriol 2007; 189:4456–4464 [CrossRef]
    [Google Scholar]
  68. Hillmann F, Argentini M, Buddelmeijer N. Kinetics and phospholipid specificity of apolipoprotein N-acyltransferase. J Biol Chem 2011; 286:27936–27946 [CrossRef]
    [Google Scholar]
  69. Smith AM, Harrison JS, Grube CD, Sheppe AEF, Sahara N et al. tRNA-dependent alanylation of diacylglycerol and phosphatidylglycerol in Corynebacterium glutamicum . Mol Microbiol 2015; 98:681–693 [CrossRef]
    [Google Scholar]
  70. Tokunaga M, Tokunaga H, Wu HC. Post-translational modification and processing of Escherichia coli prolipoprotein in vitro . Proc Natl Acad Sci USA 1982; 79:2255–2259 [CrossRef][PubMed]
    [Google Scholar]
  71. Wehmeier S, Varghese AS, Gurcha SS, Tissot B, Panico M et al. Glycosylation of the phosphate binding protein, PstS, in Streptomyces coelicolor by a pathway that resembles protein O-mannosylation in eukaryotes. Mol Microbiol 2009; 71:421–433 [CrossRef]
    [Google Scholar]
  72. Baulard AR, Gurcha SS, Engohang-Ndong J, Gouffi K, Locht C et al. In vivo interaction between the polyprenol phosphate mannose synthase Ppm1 and the integral membrane protein Ppm2 from Mycobacterium smegmatis revealed by a bacterial two-hybrid system. J Biol Chem 2003; 278:2242–2248 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000937
Loading
/content/journal/micro/10.1099/mic.0.000937
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error