1887

Abstract

Twitching motility-mediated biofilm expansion occurs via coordinated, multi-cellular collective behaviour to allow bacteria to actively expand across surfaces. Type-IV pili (T4P) are cell-associated virulence factors which mediate twitching motility via rounds of extension, surface attachment and retraction. The Chp chemosensory system is thought to respond to environmental signals to regulate the biogenesis, assembly and twitching motility function of T4P. In other well characterised chemosensory systems, methyl-accepting chemotaxis proteins (MCPs) feed environmental signals through a CheW adapter protein to the histidine kinase CheA to modulate motility. The Chp system has an MCP PilJ and two CheW adapter proteins, PilI and ChpC, that likely interact with the histidine kinase ChpA to feed environmental signals into the system. In the current study we show that ChpC is involved in the response to host-derived signals serum albumin, mucin and oligopeptides. We demonstrate that these signals stimulate an increase in twitching motility, as well as in levels of 3′−5′-cyclic adenosine monophosphate (cAMP) and surface-assembled T4P. Interestingly, our data shows that changes in cAMP and surface piliation levels are independent of ChpC but that the twitching motility response to these environmental signals requires ChpC. Furthermore, we show that protease activity is required for the twitching motility response of to environmental signals. Based upon our data we propose a model whereby ChpC feeds these environmental signals into the Chp system, potentially via PilJ or another MCP, to control twitching motility. PilJ and PilI then modulate T4P surface levels to allow the cell to continue to undergo twitching motility. Our study is the first to link environmental signals to the Chp chemosensory system and refines our understanding of how this system controls twitching motility-mediated biofilm expansion in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000911
2020-06-01
2020-08-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/166/7/669.html?itemId=/content/journal/micro/10.1099/mic.0.000911&mimeType=html&fmt=ahah

References

  1. Høiby N, Ciofu O, Bjarnsholt T. Pseudomonas aeruginosa biofilms in cystic fibrosis. Future Microbiol 2010; 5:1663–1674 [CrossRef][PubMed]
    [Google Scholar]
  2. Mittal R, Aggarwal S, Sharma S, Chhibber S, Harjai K. Urinary tract infections caused by Pseudomonas aeruginosa: a minireview. J Infect Public Health 2009; 2:101–111 [CrossRef][PubMed]
    [Google Scholar]
  3. Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 2002; 15:167–193 [CrossRef][PubMed]
    [Google Scholar]
  4. Van Delden C, Iglewski BH. Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg Infect Dis 1998; 4:551–560 [CrossRef][PubMed]
    [Google Scholar]
  5. Whitchurch CB, Levesque RC, Levesque RC, Levesque RC. Biogenesis and function of type IV pili in Pseudomonas species. In Ramos J-L, Levesque RC. (editors) Pseudomonas Springer US: 2006 pp 139–188
    [Google Scholar]
  6. Gloag ES, Turnbull L, Huang A, Vallotton P, Wang H et al. Self-Organization of bacterial biofilms is facilitated by extracellular DNA. Proc Natl Acad Sci U S A 2013; 110:11541–11546 [CrossRef][PubMed]
    [Google Scholar]
  7. Donlan RM. Biofilms and device-associated infections. Emerg Infect Dis 2001; 7:277–281 [CrossRef][PubMed]
    [Google Scholar]
  8. Sabbuba N, Hughes G, Stickler DJ. The migration of Proteus mirabilis and other urinary tract pathogens over Foley catheters. BJU Int 2002; 89:55–60 [CrossRef][PubMed]
    [Google Scholar]
  9. Stickler DJ. Bacterial biofilms in patients with indwelling urinary catheters. Nat Clin Pract Urol 2008; 5:598–608 [CrossRef][PubMed]
    [Google Scholar]
  10. Nickel JC, Downey J, Costerton JW. Movement of Pseudomonas aeruginosa along catheter surfaces. A mechanism in pathogenesis of catheter-associated infection. Urology 1992; 39:93–98 [CrossRef][PubMed]
    [Google Scholar]
  11. Darzins A. The pilG gene product, required for Pseudomonas aeruginosa pilus production and twitching motility, is homologous to the enteric, single-domain response regulator CheY. J Bacteriol 1993; 175:5934–5944 [CrossRef][PubMed]
    [Google Scholar]
  12. Darzins A. Characterization of a Pseudomonas aeruginosa gene cluster involved in pilus biosynthesis and twitching motility: sequence similarity to the chemotaxis proteins of enterics and the gliding bacterium Myxococcus xanthus . Mol Microbiol 1994; 11:137–153 [CrossRef][PubMed]
    [Google Scholar]
  13. Darzins A. The pilG gene product, required for Pseudomonas aeruginosa pilus production and twitching motility, is homologous to the enteric, single-domain response regulator CheY. Mol Microbiol 1995; 15:703–717
    [Google Scholar]
  14. Whitchurch CB, Leech AJ, Young MD, Kennedy D, Sargent JL et al. Characterization of a complex chemosensory signal transduction system which controls twitching motility in Pseudomonas aeruginosa . Mol Microbiol 2004; 52:873–893 [CrossRef][PubMed]
    [Google Scholar]
  15. Baker MD, Wolanin PM, Stock JB. Signal transduction in bacterial chemotaxis. Bioessays 2006; 28:9–22 [CrossRef][PubMed]
    [Google Scholar]
  16. Sampedro I, Parales RE, Krell T, Hill JE. Pseudomonas chemotaxis. FEMS Microbiol Rev 2015; 39:17–46 [CrossRef][PubMed]
    [Google Scholar]
  17. Croft L, Beatson SA, Whitchurch CB, Huang B, Blakeley RL et al. An interactive web-based Pseudomonas aeruginosa genome database: discovery of new genes, pathways and structures. Microbiology 2000; 146:2351–2364 [CrossRef][PubMed]
    [Google Scholar]
  18. Kato J, Kim H-E, Takiguchi N, Kuroda A, Ohtake H. Pseudomonas aeruginosa as a model microorganism for investigation of chemotactic behaviors in ecosystem. J Biosci Bioeng 2008; 106:1–7 [CrossRef][PubMed]
    [Google Scholar]
  19. Fernández M, Rico-Jiménez M, Ortega Álvaro, Daddaoua A, García García AI et al. Determination of Ligand Profiles for Pseudomonas aeruginosa Solute Binding Proteins. Int J Mol Sci 2019; 20:5156 [CrossRef][PubMed]
    [Google Scholar]
  20. Taguchi K, Fukutomi H, Kuroda A, Kato J, Ohtake H. Genetic identification of chemotactic transducers for amino acids in Pseudomonas aeruginosa . Microbiology 1997; 143:3223–3229 [CrossRef][PubMed]
    [Google Scholar]
  21. Rico-Jiménez M, Muñoz-Martínez F, García-Fontana C, Fernandez M, Morel B et al. Paralogous chemoreceptors mediate chemotaxis towards protein amino acids and the non-protein amino acid gamma-aminobutyrate (GABA). Mol Microbiol 2013; 88:1230–1243 [CrossRef][PubMed]
    [Google Scholar]
  22. Wu H, Kato J, Kuroda A, Ikeda T, Takiguchi N et al. Identification and characterization of two chemotactic transducers for inorganic phosphate in Pseudomonas aeruginosa . J Bacteriol 2000; 182:3400–3404 [CrossRef][PubMed]
    [Google Scholar]
  23. Ortega DR, Fleetwood AD, Krell T, Harwood CS, Jensen GJ et al. Assigning chemoreceptors to chemosensory pathways in Pseudomonas aeruginosa . Proc Natl Acad Sci U S A 2017; 114:12809–12814 [CrossRef][PubMed]
    [Google Scholar]
  24. Rico-Jiménez M, Reyes-Darias JA, Ortega Álvaro, Díez Peña AI, Morel B et al. Two different mechanisms mediate chemotaxis to inorganic phosphate in Pseudomonas aeruginosa . Sci Rep 2016; 6:28967 [CrossRef][PubMed]
    [Google Scholar]
  25. Kim H-E, Shitashiro M, Kuroda A, Takiguchi N, Kato J. Ethylene chemotaxis in Pseudomonas aeruginosa and other Pseudomonas species. Microbes Environ 2007; 22:186–189 [CrossRef]
    [Google Scholar]
  26. Kim H-E, Shitashiro M, Kuroda A, Takiguchi N, Ohtake H et al. Identification and characterization of the chemotactic transducer in Pseudomonas aeruginosa PAO1 for positive chemotaxis to trichloroethylene. J Bacteriol 2006; 188:6700–6702 [CrossRef][PubMed]
    [Google Scholar]
  27. Alvarez-Ortega C, Harwood CS. Identification of a malate chemoreceptor in Pseudomonas aeruginosa by screening for chemotaxis defects in an energy taxis-deficient mutant. Appl Environ Microbiol 2007; 73:7793–7795 [CrossRef][PubMed]
    [Google Scholar]
  28. Bardy SL, Maddock JR. Polar localization of a soluble methyl-accepting protein of Pseudomonas aeruginosa . J Bacteriol 2005; 187:7840–7844 [CrossRef][PubMed]
    [Google Scholar]
  29. Martín-Mora D, Ortega A, Reyes-Darias JA, García V, López-Farfán D et al. Identification of a Chemoreceptor in Pseudomonas aeruginosa That Specifically Mediates Chemotaxis Toward α-Ketoglutarate. Front Microbiol 2016; 7:1937 [CrossRef][PubMed]
    [Google Scholar]
  30. Güvener ZT, Tifrea DF, Harwood CS. Two different Pseudomonas aeruginosa chemosensory signal transduction complexes localize to cell poles and form and remould in stationary phase. Mol Microbiol 2006; 61:106–118 [CrossRef][PubMed]
    [Google Scholar]
  31. O'Connor JR, Kuwada NJ, Huangyutitham V, Wiggins PA, Harwood CS. Surface sensing and lateral subcellular localization of WspA, the receptor in a chemosensory-like system leading to c-di-GMP production. Mol Microbiol 2012; 86:720–729 [CrossRef][PubMed]
    [Google Scholar]
  32. Hamer R, Chen P-Y, Armitage JP, Reinert G, Deane CM. Deciphering chemotaxis pathways using cross species comparisons. BMC Syst Biol 2010; 4:3 [CrossRef][PubMed]
    [Google Scholar]
  33. Persat A, Inclan YF, Engel JN, Stone HA, Gitai Z. Type IV pili mechanochemically regulate virulence factors in Pseudomonas aeruginosa . Proc Natl Acad Sci U S A 2015; 112:7563–7568 [CrossRef][PubMed]
    [Google Scholar]
  34. Luo Y, Zhao K, Baker AE, Kuchma SL, Coggan KA et al. A hierarchical cascade of second messengers regulates Pseudomonas aeruginosa surface behaviors. mBio 2015; 6:e02456-14 [CrossRef][PubMed]
    [Google Scholar]
  35. Belete B, Lu H, Wozniak DJ. Pseudomonas aeruginosa AlgR regulates type IV pilus biosynthesis by activating transcription of the fimU-pilVWXY1Y2E operon. J Bacteriol 2008; 190:2023–2030 [CrossRef][PubMed]
    [Google Scholar]
  36. Fulcher NB, Holliday PM, Klem E, Cann MJ, Wolfgang MC. The Pseudomonas aeruginosa Chp chemosensory system regulates intracellular cAMP levels by modulating adenylate cyclase activity. Mol Microbiol 2010; 76:889–904 [CrossRef][PubMed]
    [Google Scholar]
  37. Wolfgang MC, Lee VT, Gilmore ME, Lory S. Coordinate regulation of bacterial virulence genes by a novel adenylate cyclase-dependent signaling pathway. Dev Cell 2003; 4:253–263 [CrossRef][PubMed]
    [Google Scholar]
  38. Beatson SA, Whitchurch CB, Sargent JL, Levesque RC, Mattick JS. Differential regulation of twitching motility and elastase production by Vfr in Pseudomonas aeruginosa . J Bacteriol 2002; 184:3605–3613 [CrossRef][PubMed]
    [Google Scholar]
  39. Whitchurch CB, Beatson SA, Comolli JC, Jakobsen T, Sargent JL et al. Pseudomonas aeruginosa fimL regulates multiple virulence functions by intersecting with Vfr-modulated pathways. Mol Microbiol 2005; 55:1357–1378 [CrossRef][PubMed]
    [Google Scholar]
  40. Inclan YF, Huseby MJ, Engel JN. FimL regulates cAMP synthesis in Pseudomonas aeruginosa . PLoS One 2011; 6:e15867 [CrossRef][PubMed]
    [Google Scholar]
  41. Nolan LM, Beatson SA, Croft L, Jones PM, George AM et al. Extragenic suppressor mutations that restore twitching motility to fimL mutants of Pseudomonas aeruginosa are associated with elevated intracellular cyclic AMP levels. Microbiologyopen 2012; 1:490–501 [CrossRef][PubMed]
    [Google Scholar]
  42. Huang B, Whitchurch CB, Mattick JS, FimX MJS. a multidomain protein connecting environmental signals to twitching motility in Pseudomonas aeruginosa. J Bacteriol 2003; 185:7068–7076 [CrossRef][PubMed]
    [Google Scholar]
  43. Li JD, Dohrman AF, Gallup M, Miyata S, Gum JR et al. Transcriptional activation of mucin by Pseudomonas aeruginosa lipopolysaccharide in the pathogenesis of cystic fibrosis lung disease. Proc Natl Acad Sci U S A 1997; 94:967–972 [CrossRef][PubMed]
    [Google Scholar]
  44. Korgaonkar AK, Whiteley M. Pseudomonas aeruginosa enhances production of an antimicrobial in response to N-acetylglucosamine and peptidoglycan. J Bacteriol 2011; 193:909–917 [CrossRef][PubMed]
    [Google Scholar]
  45. Putnam DF. Composition and concentrative properties of human urine. NASA contract report; 1971
  46. Lutz W, Markiewicz K, Klyszejko-Stefanowicz L. Oligopeptides excreted in the urine of healthy humans and of patients with nephrotic syndrome. Clin Chim Acta 1972; 39:425–431 [CrossRef][PubMed]
    [Google Scholar]
  47. Kentsis A, Monigatti F, Dorff K, Campagne F, Bachur R et al. Urine proteomics for profiling of human disease using high accuracy mass spectrometry. Proteomics Clin Appl 2009; 3:1052–1061 [CrossRef][PubMed]
    [Google Scholar]
  48. Cain AK, Nolan LM, Sullivan GJ, Whitchurch CB, Filloux A et al. Complete genome sequence of Pseudomonas aeruginosa reference strain PAK. Microbiol Resour Announc 2019; 8:e00865-19 [CrossRef][PubMed]
    [Google Scholar]
  49. Winsor GL, Griffiths EJ, Lo R, Dhillon BK, Shay JA et al. Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database. Nucleic Acids Res 2016; 44:D646–D653 [CrossRef][PubMed]
    [Google Scholar]
  50. Sambrook JRD. Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2001
    [Google Scholar]
  51. Mattick JS, Bills MM, Anderson BJ, Dalrymple B, Mott MR et al. Morphogenetic expression of. J Bacteriol 1987; 169:33–41
    [Google Scholar]
  52. Hoang TT, Kutchma AJ, Becher A, Schweizer HP. Integration-proficient plasmids for Pseudomonas aeruginosa: site-specific integration and use for engineering of reporter and expression strains. Plasmid 2000; 43:59–72 [CrossRef][PubMed]
    [Google Scholar]
  53. Choi K-H, Gaynor JB, White KG, Lopez C, Bosio CM et al. A Tn7-based broad-range bacterial cloning and expression system. Nat Methods 2005; 2:443–448 [CrossRef][PubMed]
    [Google Scholar]
  54. Semmler AB, Whitchurch CB, Mattick JS. A re-examination of twitching motility in Pseudomonas aeruginosa . Microbiology 1999; 145:2863–2873 [CrossRef][PubMed]
    [Google Scholar]
  55. Huppertz T, Fox PF, Kelly AL. The caseins: Structure, stability, and functionality. Proteins in food processing. Elsevier 201849–92
    [Google Scholar]
  56. Burrows LL. Pseudomonas aeruginosa twitching motility: type IV pili in action. Annu Rev Microbiol 2012; 66:493–520 [CrossRef][PubMed]
    [Google Scholar]
  57. Rahme LG, Stevens EJ, Wolfort SF, Shao J, Tompkins RG et al. Common virulence factors for bacterial pathogenicity in plants and animals. Science 1995; 268:1899–1902 [CrossRef][PubMed]
    [Google Scholar]
  58. Watson AA, Alm RA, Mattick JS. Construction of improved vectors for protein production in Pseudomonas aeruginosa . Gene 1996; 172:163–164 [CrossRef][PubMed]
    [Google Scholar]
  59. Simon R, O'Connell M, Labes M, Pühler A. Plasmid vectors for the genetic analysis and manipulation of rhizobia and other gram-negative bacteria. Methods Enzymol 1986; 118:640–659 [CrossRef][PubMed]
    [Google Scholar]
  60. Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ, Schweizer HP. A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 1998; 212:77–86 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000911
Loading
/content/journal/micro/10.1099/mic.0.000911
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error