1887

Abstract

The chloroplast of microalgae such as represents an attractive chassis for light-driven production of novel recombinant proteins and metabolites. Methods for the introduction and expression of transgenes in the chloroplast genome (=plastome) of are well-established and over 100 different proteins have been successfully produced. However, in almost all reported cases the complexity of the genetic engineering is low, and typically involves introduction into the plastome of just a single transgene together with a selectable marker. In order to exploit fully the potential of the algal chassis it is necessary to establish methods for multigenic engineering in which many transgenes can be stably incorporated into the plastome. This would allow the synthesis of multi-subunit proteins and the introduction into the chloroplast of whole new metabolic pathways. In this short communication we report a proof-of-concept study involving both a combinatorial and serial approach, with the goal of synthesizing five different test proteins in the chloroplast. Analysis of the various transgenic lines confirmed the successful integration of the transgenes and accumulation of the gene products. However, the work also highlights an issue of genetic instability when using the same untranslated region for each of the transgenes. Our findings therefore help to define appropriate strategies for robust multigenic engineering of the algal chloroplast.

Funding
This study was supported by the:
  • Marco Larrea-Alvarez , Secretaría de Educación Superior, Ciencia, Tecnología e Innovación , (Award n/a)
  • Saul Purton , Biotechnology and Biological Sciences Research Council , (Award BB/R016534/1)
  • Saul Purton , Biotechnology and Biological Sciences Research Council , (Award BB/L002957/1)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000910
2020-04-06
2020-06-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/10.1099/mic.0.000910/mic000910.html?itemId=/content/journal/micro/10.1099/mic.0.000910&mimeType=html&fmt=ahah

References

  1. Sanchez-Garcia L, Martín L, Mangues R, Ferrer-Miralles N, Vázquez E et al. Recombinant pharmaceuticals from microbial cells: a 2015 update. Microb Cell Fact 2016; 15: 33 [CrossRef] [PubMed]
    [Google Scholar]
  2. Hempel F, Maier UG. Microalgae as solar-powered protein factories. Adv Exp Med Biol 2016; 896: 241 262 [CrossRef] [PubMed]
    [Google Scholar]
  3. Taunt HN, Stoffels L, Purton S. Green biologics: the algal chloroplast as a platform for making biopharmaceuticals. Bioengineered 2018; 9: 48 54 [CrossRef] [PubMed]
    [Google Scholar]
  4. Gimpel JA, Hyun JS, Schoepp NG, Mayfield SP. Production of recombinant proteins in microalgae at pilot greenhouse scale. Biotechnol Bioeng 2015; 112: 339 345 [CrossRef] [PubMed]
    [Google Scholar]
  5. Borowitzka MA, Vonshak A. Scaling up microalgal cultures to commercial scale. Eur J Phycol 2017; 52: 407 418 [CrossRef]
    [Google Scholar]
  6. Stoffels L, Finlan A, Mannall G, Purton S, Parker B. Downstream processing of Chlamydomonas reinhardtii for recombinant endolysin production. Front Bioeng Biotechnol 2019
    [Google Scholar]
  7. Rolland N, Curien G, Finazzi G, Kuntz M, Maréchal E et al. The biosynthetic capacities of the plastids and integration between cytoplasmic and chloroplast processes. Annu Rev Genet 2012; 46: 233 264 [CrossRef] [PubMed]
    [Google Scholar]
  8. Green BR. Chloroplast genomes of photosynthetic eukaryotes. Plant J 2011; 66: 34 44 [CrossRef] [PubMed]
    [Google Scholar]
  9. Purton S, Szaub JB, Wannathong T, Young R, Economou CK. Genetic engineering of algal chloroplasts: progress and prospects. Russ J Plant Physiol 2013; 60: 491 499 [CrossRef]
    [Google Scholar]
  10. Siddiqui A, Wei Z, Boehm M, Ahmad N. Engineering microalgae through chloroplast transformation to produce high‐value industrial products. Biotechnol Appl Biochem 2019; 1: [CrossRef] [PubMed]
    [Google Scholar]
  11. Dyo YM, Purton S. The algal chloroplast as a synthetic biology platform for production of therapeutic proteins. Microbiology 2018; 164: 113 121 [CrossRef] [PubMed]
    [Google Scholar]
  12. Purton S. Tools and techniques for chloroplast transformation of Chlamydomonas . Adv Exp Med Biol 2007; 616: 34 45 [CrossRef] [PubMed]
    [Google Scholar]
  13. Esland L, Larrea-Alvarez M, Purton S. Selectable markers and reporter genes for engineering the chloroplast of Chlamydomonas reinhardtii . Biology 2018; 7: E46 [CrossRef] [PubMed]
    [Google Scholar]
  14. Young REB, Purton S. Codon reassignment to facilitate genetic engineering and biocontainment in the chloroplast of Chlamydomonas reinhardtii . Plant Biotechnol J 2016; 14: 1251 1260 [CrossRef] [PubMed]
    [Google Scholar]
  15. Faè M, Accossato S, Cella R, Fontana F, Goldschmidt-Clermont M et al. Comparison of transplastomic Chlamydomonas reinhardtii and Nicotiana tabacum expression system for the production of a bacterial endoglucanase. Appl Microbiol Biotechnol 2017; 101: 4085 4092 [CrossRef] [PubMed]
    [Google Scholar]
  16. Richter LV, Yang H, Yazdani M, Hanson MR, Ahner BA. A downstream box fusion allows stable accumulation of a bacterial cellulase in Chlamydomonas reinhardtii chloroplasts. Biotechnol Biofuels 2018; 11: 133 [CrossRef] [PubMed]
    [Google Scholar]
  17. Fukusaki E-I, Nishikawa T, Kato K, Shinmyo A, Hemmi H et al. Introduction of the archaebacterial geranylgeranyl pyrophosphate synthase gene into Chlamydomonas reinhardtii chloroplast. J Biosci Bioeng 2003; 95: 283 287 [CrossRef] [PubMed]
    [Google Scholar]
  18. Papaefthimiou D, Diretto G, Demurtas OC, Mini P, Ferrante P et al. Heterologous production of labdane-type diterpenes in the green alga Chlamydomonas reinhardtii . Phytochemistry 2019; 167: 112082 [CrossRef] [PubMed]
    [Google Scholar]
  19. Tevatia R, Payne S, Allen J, White D, Clemente TE et al. A synthetic cdo/csad taurine pathway in the green unicellular alga Chlamydomonas reinhardtii . Algal Research 2019; 40: 101491 [CrossRef]
    [Google Scholar]
  20. Gangl D, Zedler JAZ, Włodarczyk A, Jensen PE, Purton S et al. Expression and membrane-targeting of an active plant cytochrome P450 in the chloroplast of the green alga Chlamydomonas reinhardtii . Phytochemistry 2015; 110: 22 28 [CrossRef] [PubMed]
    [Google Scholar]
  21. Paik S-M, Kim J, Jin E, Jeon NL. Overproduction of recombinant E. coli malate synthase enhances Chlamydomonas reinhardtii biomass by upregulating heterotrophic metabolism. Bioresour Technol 2019; 272: 594 598 [CrossRef] [PubMed]
    [Google Scholar]
  22. Su Z-L, Qian K-X, Tan C-P, Meng C-X, Qin S. Recombination and heterologous expression of allophycocyanin gene in the chloroplast of Chlamydomonas reinhardtii . Acta Biochim Biophys Sin 2005; 37: 709 712 [CrossRef] [PubMed]
    [Google Scholar]
  23. Tran M, Zhou B, Pettersson PL, Gonzalez MJ, Mayfield SP. Synthesis and assembly of a full-length human monoclonal antibody in algal chloroplasts. Biotechnol Bioeng 2009; 104: 663 673 [CrossRef] [PubMed]
    [Google Scholar]
  24. Yang J, Xie X, Yang M, Dixon R, Wang Y-P. Modular electron-transport chains from eukaryotic organelles function to support nitrogenase activity. Proc Natl Acad Sci U S A 2017; 114: E2460 E2465 [CrossRef] [PubMed]
    [Google Scholar]
  25. Young REB, Purton S. Cytosine deaminase as a negative selectable marker for the microalgal chloroplast: a strategy for the isolation of nuclear mutations that affect chloroplast gene expression. Plant J 2014; 80: 915 925 [CrossRef] [PubMed]
    [Google Scholar]
  26. Dubin G, Stec-Niemczyk J, Kisielewska M, Pustelny K, Popowicz GM et al. Enzymatic activity of the Staphylococcus aureus SplB serine protease is induced by substrates containing the sequence Trp-Glu-Leu-Gln. J Mol Biol 2008; 379: 343 356 [CrossRef] [PubMed]
    [Google Scholar]
  27. Larrea-Alvarez M. Molecular tools and approaches for increasing complexity of transplastomic engineering in Chlamydomonas reinhardtii. PhD thesis, UCL (University College London). 2018. https://discovery.ucl.ac.uk/id/eprint/10047617/ .
  28. Cao H-P, Wang H-N, Zhang A-Y, Ding M-D, Liu S-T et al. Expression of avian infectious bronchitis virus multi-epitope based peptide EPIC in Lactococcus lactis for oral immunization of chickens. Biosci Biotechnol Biochem 2012; 76: 1871 1876 [CrossRef] [PubMed]
    [Google Scholar]
  29. Stoffels L, Taunt HN, Charalambous B, Purton S. Synthesis of bacteriophage lytic proteins against Streptococcus pneumoniae in the chloroplast of Chlamydomonas reinhardtii . Plant Biotechnol J 2017; 15: 1130 1140 [CrossRef] [PubMed]
    [Google Scholar]
  30. Wannathong T, Waterhouse JC, Young REB, Economou CK, Purton S. New tools for chloroplast genetic engineering allow the synthesis of human growth hormone in the green alga Chlamydomonas reinhardtii . Appl Microbiol Biotechnol 2016; 100: 5467 5477 [CrossRef] [PubMed]
    [Google Scholar]
  31. Choquet Y, Wollman F-A. Translational regulations as specific traits of chloroplast gene expression. FEBS Lett 2002; 529: 39 42 [CrossRef] [PubMed]
    [Google Scholar]
  32. Barnes D, Franklin S, Schultz J, Henry R, Brown E et al. Contribution of 5'- and 3'-untranslated regions of plastid mRNAs to the expression of Chlamydomonas reinhardtii chloroplast genes. Mol Genet Genomics 2005; 274: 625 636 [CrossRef] [PubMed]
    [Google Scholar]
  33. Economou C, Wannathong T, Szaub J, Purton S. A simple, low-cost method for chloroplast transformation of the green alga Chlamydomonas reinhardtii . Methods Mol Biol 2014; 1132: 401 411 [CrossRef] [PubMed]
    [Google Scholar]
  34. Goldschmidt-Clermont M, Rahire M, Rochaix J-D. Redundant cis-acting determinants of 3' processing and RNA stability in the chloroplast rbcL mRNA of Chlamydomonas . Plant J 2008; 53: 566 577 [CrossRef] [PubMed]
    [Google Scholar]
  35. Goldschmidt-Clermont M. Transgenic expression of aminoglycoside adenine transferase in the chloroplast: a selectable marker of site-directed transformation of Chlamydomonas . Nucleic Acids Res 1991; 19: 4083 4089 [CrossRef] [PubMed]
    [Google Scholar]
  36. Cheng Q, Day A, Dowson-Day M, Shen G-F, Dixon R. The Klebsiella pneumoniae nitrogenase Fe protein gene (nifH) functionally substitutes for the chlL gene in Chlamydomonas reinhardtii . Biochem Biophys Res Commun 2005; 329: 966 975 [CrossRef] [PubMed]
    [Google Scholar]
  37. Eberhard S, Drapier D, Wollman F-A. Searching limiting steps in the expression of chloroplast-encoded proteins: relations between gene copy number, transcription, transcript abundance and translation rate in the chloroplast of Chlamydomonas reinhardtii . Plant J 2002; 31: 149 160 [CrossRef] [PubMed]
    [Google Scholar]
  38. Fischer N, Stampacchia O, Redding K, Rochaix JD. Selectable marker recycling in the chloroplast. Mol Gen Genet 1996; 251: 373 380 [CrossRef] [PubMed]
    [Google Scholar]
  39. Gimpel JA, Mayfield SP. Analysis of heterologous regulatory and coding regions in algal chloroplasts. Appl Microbiol Biotechnol 2013; 97: 4499 4510 [CrossRef] [PubMed]
    [Google Scholar]
  40. Kramzar LM, Mueller T, Erickson B, Higgs DC. Regulatory sequences of orthologous petD chloroplast mRNAs are highly specific among Chlamydomonas species. Plant Mol Biol 2006; 60: 405 422 [CrossRef] [PubMed]
    [Google Scholar]
  41. Specht EA, Mayfield SP. Synthetic oligonucleotide libraries reveal novel regulatory elements in Chlamydomonas chloroplast mRNAs. ACS Synth Biol 2013; 2: 34 46 [CrossRef] [PubMed]
    [Google Scholar]
  42. Taylor GM, Mordaka PM, Heap JT. Start-Stop assembly: a functionally scarless DNA assembly system optimized for metabolic engineering. Nucleic Acids Res 2019; 47: e17 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000910
Loading
/content/journal/micro/10.1099/mic.0.000910
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error