1887

Abstract

The ability of bacteria to form biofilms increases their survival under adverse environmental conditions. Biofilms have enormous medical and environmental impact; consequently, the factors that influence biofilm formation are an important area of study. In this investigation, the roles of two cold shock proteins (CSP) during biofilm formation were investigated in Typhimurium, which is a major foodborne pathogen. Among all CSP transcripts studied, the expression of (STM14_0732) was higher during biofilm growth. The deletion strain (Δ) did not form biofilms on a cholesterol coated glass surface; however, complementation with WT , but not the F30V mutant, was able to rescue this phenotype. Transcript levels of other CSPs demonstrated up-regulation of (STM14_4399) in Δ. The deletion strain (Δ) did not affect biofilm formation; however, ΔΔ exhibited higher biofilm formation compared to Δ. Most likely, the higher amounts in Δ reduced biofilm formation, which was corroborated using over-expression studies. Further functional studies revealed that Δ and ΔΔ exhibited slow swimming but no swarming motility. Although over-expression did not affect motility, complementation restored the swarming motility of Δ. The transcript levels of the major genes involved in motility in Δ demonstrated lower expression of the class III (, , ), but not class I () or class II (, ), flagellar regulon genes. Overall, this study has identified the interplay of two CSPs in regulating two biological processes: CspE is essential for motility in a CspA-independent manner whereas biofilm formation is CspA-dependent.

Keyword(s): biofilm , cold shock proteins , CspA , CspE and motility
Funding
This study was supported by the:
  • Dipankar Nandi , Council of Scientific and Industrial Research, India , (Award 37(1670)16/EMR-II)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000900
2020-03-11
2020-06-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/166/5/460.html?itemId=/content/journal/micro/10.1099/mic.0.000900&mimeType=html&fmt=ahah

References

  1. Ermolenko DN, Makhatadze GI. Bacterial cold-shock proteins. Cell Mol Life Sci 2002; 59:1902–1913 [CrossRef][PubMed]
    [Google Scholar]
  2. Jones PG, Inouye M. The cold-shock response-a hot topic. Mol Microbiol 1994; 11:811–818 [CrossRef][PubMed]
    [Google Scholar]
  3. Phadtare S. Recent developments in bacterial cold-shock response. Curr Issues Mol Biol 2004; 6:125–136[PubMed]
    [Google Scholar]
  4. Phadtare S, Severinov K. RNA remodeling and gene regulation by cold shock proteins. RNA Biol 2010; 7:788–795 [CrossRef][PubMed]
    [Google Scholar]
  5. Bae W, Xia B, Inouye M, Severinov K. Escherichia coli CspA-family RNA chaperones are transcription antiterminators. Proc Natl Acad Sci U S A 2000; 97:7784–7789 [CrossRef][PubMed]
    [Google Scholar]
  6. Jiang W, Hou Y, Inouye M. Cspa, the major cold-shock protein of Escherichia coli, is an RNA chaperone. J Biol Chem 1997; 272:196–202 [CrossRef][PubMed]
    [Google Scholar]
  7. Goldstein J, Pollitt NS, Inouye M. Major cold shock protein of Escherichia coli . Proc Natl Acad Sci U S A 1990; 87:283–287 [CrossRef][PubMed]
    [Google Scholar]
  8. Caballero CJ, Menendez-Gil P, Catalan-Moreno A, Vergara-Irigaray M, García B et al. The regulon of the RNA chaperone CspA and its auto-regulation in Staphylococcus aureus . Nucleic Acids Res 2018; 46:1345–1361 [CrossRef][PubMed]
    [Google Scholar]
  9. Yamanaka K, Inouye M. Growth-phase-dependent expression of cspD, encoding a member of the CspA family in Escherichia coli . J Bacteriol 1997; 179:5126–5130 [CrossRef][PubMed]
    [Google Scholar]
  10. Martínez-Costa OH, Zalacaín M, Holmes DJ, Malpartida F. The promoter of a cold-shock-like gene has pleiotropic effects on Streptomyces antibiotic biosynthesis. FEMS Microbiol Lett 2003; 220:215–221 [CrossRef][PubMed]
    [Google Scholar]
  11. Mangoli S, Sanzgiri VR, Mahajan SK. A common regulator of cold and radiation response in Escherichia coli . J Environ Pathol Toxicol Oncol 2001; 20:4–6 [CrossRef][PubMed]
    [Google Scholar]
  12. Phadtare S, Inouye M. Role of CspC and CspE in regulation of expression of rpoS and UspA, the stress response proteins in Escherichia coli. J Bacteriol 2001; 183:1205–1214 [CrossRef][PubMed]
    [Google Scholar]
  13. Sand O, Gingras M, Beck N, Hall C, Trun N. Phenotypic characterization of overexpression or deletion of the Escherichia coli crcA, cspE and crcB genes. Microbiology 2003; 149:2107–2117 [CrossRef][PubMed]
    [Google Scholar]
  14. Segura A, Godoy P, van Dillewijn P, Hurtado A, Arroyo N et al. Proteomic analysis reveals the participation of energy- and stress-related proteins in the response of Pseudomonas putida DOT-T1E to toluene. J Bacteriol 2005; 187:5937–5945 [CrossRef][PubMed]
    [Google Scholar]
  15. Ray S, Da Costa R, Das M, Nandi D. Interplay of cold shock protein E with an uncharacterized protein, YciF, lowers porin expression and enhances bile resistance in Salmonella typhimurium. J Biol Chem 2019; 294:9084–9099 [CrossRef][PubMed]
    [Google Scholar]
  16. Rabsch W, Tschäpe H, Bäumler AJ. Non-typhoidal salmonellosis: emerging problems. Microbes Infect 2001; 3:237–247 [CrossRef][PubMed]
    [Google Scholar]
  17. Gordon MA. Salmonella infections in immunocompromised adults. J Infect 2008; 56:413–422 [CrossRef][PubMed]
    [Google Scholar]
  18. Gilchrist JJ, MacLennan CA. Invasive nontyphoidal Salmonella disease in Africa. EcoSal Plus 2019; 8: [CrossRef][PubMed]
    [Google Scholar]
  19. Owen SV, Wenner N, Canals R, Makumi A, Hammarlöf DL et al. Characterization of the prophage repertoire of African Salmonella Typhimurium ST313 reveals high levels of spontaneous induction of novel phage BTP1. Front Microbiol 2017; 8:235 [CrossRef][PubMed]
    [Google Scholar]
  20. Ashton PM, Owen SV, Kaindama L, Rowe WPM, Lane CR et al. Public health surveillance in the UK revolutionises our understanding of the invasive Salmonella typhimurium epidemic in Africa. Genome Med 2017; 9:92 [CrossRef][PubMed]
    [Google Scholar]
  21. Morgan HP, Wear MA, McNae I, Gallagher MP, Walkinshaw MD. Crystallization and X-ray structure of cold-shock protein E from Salmonella typhimurium . Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:1240–1245 [CrossRef][PubMed]
    [Google Scholar]
  22. Horton AJ, Hak KM, Steffan RJ, Foster JW, Bej AK. Adaptive response to cold temperatures and characterization of cspA in Salmonella typhimurium LT2. Antonie van Leeuwenhoek 2000; 77:13–20 [CrossRef][PubMed]
    [Google Scholar]
  23. Craig JE, Boyle D, Francis KP, Gallagher MP. Expression of the cold-shock gene cspB in Salmonella typhimurium occurs below a threshold temperature. Microbiology 1998; 144 (Pt 3:697–704 [CrossRef][PubMed]
    [Google Scholar]
  24. Jeffreys AG, Hak KM, Steffan RJ, Foster JW, Bej AK. Growth, survival and characterization of cspA in Salmonella enteritidis following cold shock. Curr Microbiol 1998; 36:29–35 [CrossRef][PubMed]
    [Google Scholar]
  25. Kim BH, Bang IS, Lee SY, Hong SK, Bang SH et al. Expression of cspH, encoding the cold shock protein in Salmonella enterica serovar typhimurium UK-1. J Bacteriol 2001; 183:5580–5588 [CrossRef][PubMed]
    [Google Scholar]
  26. Kim Y, Wood TK. Toxins Hha and CspD and small RNA regulator Hfq are involved in persister cell formation through MqsR in Escherichia coli . Biochem Biophys Res Commun 2010; 391:209–213 [CrossRef][PubMed]
    [Google Scholar]
  27. Michaux C, Holmqvist E, Vasicek E, Sharan M, Barquist L et al. Rna target profiles direct the discovery of virulence functions for the cold-shock proteins CspC and CspE. Proc Natl Acad Sci U S A 2017; 114:6824–6829 [CrossRef][PubMed]
    [Google Scholar]
  28. Sahukhal GS, Elasri MO. Identification and characterization of an operon, msaABCR, that controls virulence and biofilm development in Staphylococcus aureus. BMC Microbiol 2014; 14:154 [CrossRef][PubMed]
    [Google Scholar]
  29. Townsley L, Sison Mangus MP, Mehic S, Yildiz FH. Response of vibrio cholerae to low-temperature shifts: CspV regulation of type VI secretion, biofilm formation, and association with zooplankton. Appl Environ Microbiol 2016; 82:4441–4452 [CrossRef][PubMed]
    [Google Scholar]
  30. Eshwar AK, Guldimann C, Oevermann A, Tasara T. Cold-Shock Domain Family Proteins (Csps) are involved in regulation of virulence, cellular aggregation, and flagella-based motility in Listeria monocytogenes . Front Cell Infect Microbiol 2017; 7:453 [CrossRef][PubMed]
    [Google Scholar]
  31. MacKenzie KD, Palmer MB, Köster WL, White AP. Examining the link between biofilm formation and the ability of pathogenic Salmonella strains to colonize multiple host species. Front Vet Sci 2017; 4:138 [CrossRef][PubMed]
    [Google Scholar]
  32. Fux CA, Costerton JW, Stewart PS, Stoodley P. Survival strategies of infectious biofilms. Trends Microbiol 2005; 13:34–40 [CrossRef][PubMed]
    [Google Scholar]
  33. Jacques M, Aragon V, Tremblay YDN. Biofilm formation in bacterial pathogens of veterinary importance. Anim Health Res Rev 2010; 11:97–121 [CrossRef][PubMed]
    [Google Scholar]
  34. Donlan RM. Biofilms: microbial life on surfaces. Emerg Infect Dis 2002; 8:881–890 [CrossRef][PubMed]
    [Google Scholar]
  35. Wolcott R, Costerton JW, Raoult D, Cutler SJ. The polymicrobial nature of biofilm infection. Clin Microbiol Infect 2013; 19:107–112 [CrossRef][PubMed]
    [Google Scholar]
  36. Habimana O, Moretro T, Langsrud S, Vestby LK, Nesse LL et al. Micro ecosystems from feed industry surfaces: a survival and biofilm study of Salmonella versus host resident flora strains. BMC Vet Res 2010; 6:48 [CrossRef][PubMed]
    [Google Scholar]
  37. Joseph B, Otta SK, Karunasagar I, Karunasagar I. Biofilm formation by Salmonella spp. on food contact surfaces and their sensitivity to sanitizers. Int J Food Microbiol 2001; 64:367–372 [CrossRef][PubMed]
    [Google Scholar]
  38. Castelijn GAA, van der Veen S, Zwietering MH, Moezelaar R, Abee T. Diversity in biofilm formation and production of curli fimbriae and cellulose of Salmonella typhimurium strains of different origin in high and low nutrient medium. Biofouling 2012; 28:51–63 [CrossRef][PubMed]
    [Google Scholar]
  39. Goeres DM, Loetterle LR, Hamilton MA, Murga R, Kirby DW et al. Statistical assessment of a laboratory method for growing biofilms. Microbiology 2005; 151:757–762 [CrossRef][PubMed]
    [Google Scholar]
  40. Mangalappalli-Illathu A, Duriez P, Masson L, Diarra MS, Scott A et al. Dynamics of antimicrobial resistance and virulence genes in Enterococcus faecalis during swine manure storage. Can J Microbiol 2010; 56:683–691 [CrossRef][PubMed]
    [Google Scholar]
  41. Gerstel U, Römling U. The csgD promoter, a control unit for biofilm formation in Salmonella typhimurium . Res Microbiol 2003; 154:659–667 [CrossRef][PubMed]
    [Google Scholar]
  42. Simm R, Morr M, Kader A, Nimtz M, Römling U. Ggdef and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 2004; 53:1123–1134 [CrossRef][PubMed]
    [Google Scholar]
  43. Hall CL, Lee VT. Cyclic-Di-Gmp regulation of virulence in bacterial pathogens. Wiley Interdiscip Rev RNA 2018; 9:e1454 [CrossRef][PubMed]
    [Google Scholar]
  44. Sultan SZ, Pitzer JE, Boquoi T, Hobbs G, Miller MR et al. Analysis of the HD-GYP domain cyclic dimeric GMP phosphodiesterase reveals a role in motility and the enzootic life cycle of Borrelia burgdorferi. Infect Immun 2011; 79:3273–3283 [CrossRef][PubMed]
    [Google Scholar]
  45. Hickman JW, Harwood CS. Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Mol Microbiol 2008; 69:376–389 [CrossRef][PubMed]
    [Google Scholar]
  46. Kuchma SL, Griffin EF, O'Toole GA. Minor pilins of the type IV pilus system participate in the negative regulation of swarming motility. J Bacteriol 2012; 194:5388–5403 [CrossRef][PubMed]
    [Google Scholar]
  47. Camilli A, Bassler BL. Bacterial small-molecule signaling pathways. Science 2006; 311:1113–1116 [CrossRef][PubMed]
    [Google Scholar]
  48. Marshall JM, Flechtner AD, La Perle KM, Gunn JS. Visualization of extracellular matrix components within sectioned Salmonella biofilms on the surface of human gallstones. PLoS One 2014; 9:e89243 [CrossRef][PubMed]
    [Google Scholar]
  49. Römling U, Rohde M, Olsén A, Normark S, Reinköster J. AgfD, the checkpoint of multicellular and aggregative behaviour in Salmonella typhimurium regulates at least two independent pathways. Mol Microbiol 2000; 36:10–23 [CrossRef][PubMed]
    [Google Scholar]
  50. Latasa C, Solano C, Penadés JR, Lasa I. Biofilm-Associated proteins. C R Biol 2006; 329:849–857 [CrossRef][PubMed]
    [Google Scholar]
  51. Guttenplan SB, Kearns DB. Regulation of flagellar motility during biofilm formation. FEMS Microbiol Rev 2013; 37:849–871 [CrossRef][PubMed]
    [Google Scholar]
  52. Gibson DL, White AP, Snyder SD, Martin S, Heiss C et al. Salmonella produces an O-antigen capsule regulated by AgfD and important for environmental persistence. J Bacteriol 2006; 188:7722–7730 [CrossRef][PubMed]
    [Google Scholar]
  53. Austin JW, Sanders G, Kay WW, Collinson SK. Thin aggregative fimbriae enhance Salmonella enteritidis biofilm formation. FEMS Microbiol Lett 1998; 162:295–301 [CrossRef][PubMed]
    [Google Scholar]
  54. de Rezende CE, Anriany Y, Carr LE, Joseph SW, Weiner RM. Capsular polysaccharide surrounds smooth and rugose types of Salmonella enterica serovar typhimurium DT104. Appl Environ Microbiol 2005; 71:7345–7351 [CrossRef][PubMed]
    [Google Scholar]
  55. Prouty AM, Gunn JS. Comparative analysis of Salmonella enterica serovar typhimurium biofilm formation on gallstones and on glass. Infect Immun 2003; 71:7154–7158 [CrossRef][PubMed]
    [Google Scholar]
  56. Bhaskarla C, Das M, Verma T, Kumar A, Mahadevan S et al. Roles of Lon protease and its substrate Mara during sodium salicylate-mediated growth reduction and antibiotic resistance in Escherichia coli. Microbiology 2016; 162:764–776 [CrossRef][PubMed]
    [Google Scholar]
  57. Necas D, Klapetek P. Gwyddion: an open-source software for SPM data analysis. Cent Eur J Phys 2012; 10:181–188
    [Google Scholar]
  58. Prouty AM, Schwesinger WH, Gunn JS. Biofilm formation and interaction with the surfaces of gallstones by Salmonella spp. Infect Immun 2002; 70:2640–2649 [CrossRef][PubMed]
    [Google Scholar]
  59. Ledeboer NA, Jones BD. Exopolysaccharide sugars contribute to biofilm formation by Salmonella enterica serovar typhimurium on HEp-2 cells and chicken intestinal epithelium. J Bacteriol 2005; 187:3214–3226 [CrossRef][PubMed]
    [Google Scholar]
  60. Grantcharova N, Peters V, Monteiro C, Zakikhany K, Römling U. Bistable expression of CsgD in biofilm development of Salmonella enterica serovar typhimurium. J Bacteriol 2010; 192:456–466 [CrossRef][PubMed]
    [Google Scholar]
  61. Uppal S, Shetty DM, Jawali N. Cyclic AMP receptor protein regulates cspD, a bacterial toxin gene, in Escherichia coli . J Bacteriol 2014; 196:1569–1577 [CrossRef][PubMed]
    [Google Scholar]
  62. Bae W, Phadtare S, Severinov K, Inouye M. Characterization of Escherichia coli cspE, whose product negatively regulates transcription of cspA, the gene for the major cold shock protein. Mol Microbiol 1999; 31:1429–1441 [CrossRef][PubMed]
    [Google Scholar]
  63. Liu W, Røder HL, Madsen JS, Bjarnsholt T, Sørensen SJ et al. Interspecific bacterial interactions are reflected in multispecies biofilm spatial organization. Front Microbiol 2016; 7:1366 [CrossRef][PubMed]
    [Google Scholar]
  64. Yang L, Liu Y, Wu H, Hóiby N, Molin S et al. Current understanding of multi-species biofilms. Int J Oral Sci 2011; 3:74–81 [CrossRef][PubMed]
    [Google Scholar]
  65. Simm R, Ahmad I, Rhen M, Le Guyon S, Römling U. Regulation of biofilm formation in Salmonella enterica serovar typhimurium. Future Microbiol 2014; 9:1261–1282 [CrossRef][PubMed]
    [Google Scholar]
  66. Steinberger RE, Holden PA. Extracellular DNA in single- and multiple-species unsaturated biofilms. Appl Environ Microbiol 2005; 71:5404–5410 [CrossRef][PubMed]
    [Google Scholar]
  67. Wood TK, González Barrios AF, Herzberg M, Lee J. Motility influences biofilm architecture in Escherichia coli . Appl Microbiol Biotechnol 2006; 72:361–367 [CrossRef][PubMed]
    [Google Scholar]
  68. Boyle KE, Heilmann S, van Ditmarsch D, Xavier JB. Exploiting social evolution in biofilms. Curr Opin Microbiol 2013; 16:207–212 [CrossRef][PubMed]
    [Google Scholar]
  69. Popat R, Crusz SA, Messina M, Williams P, West SA et al. Quorum-Sensing and cheating in bacterial biofilms. Proc Biol Sci 2012; 279:4765–4771 [CrossRef][PubMed]
    [Google Scholar]
  70. Phadtare S, Tadigotla V, Shin W-H, Sengupta A, Severinov K. Analysis of Escherichia coli global gene expression profiles in response to overexpression and deletion of CspC and CspE. J Bacteriol 2006; 188:2521–2527 [CrossRef][PubMed]
    [Google Scholar]
  71. Kim Y, Wang X, Zhang X-S, Grigoriu S, Page R et al. Escherichia coli toxin/antitoxin pair MqsR/MqsA regulate toxin CspD. Environ Microbiol 2010; 12:1105–1121 [CrossRef][PubMed]
    [Google Scholar]
  72. Römling U, Sierralta WD, Eriksson K, Normark S. Multicellular and aggregative behaviour of Salmonella typhimurium strains is controlled by mutations in the agfD promoter. Mol Microbiol 1998; 28:249–264 [CrossRef][PubMed]
    [Google Scholar]
  73. Rossi E, Paroni M, Landini P. Biofilm and motility in response to environmental and host-related signals in Gram negative opportunistic pathogens. J Appl Microbiol 201815871602 [CrossRef][PubMed]
    [Google Scholar]
  74. Kearns DB. A field guide to bacterial swarming motility. Nat Rev Microbiol 2010; 8:634–644 [CrossRef][PubMed]
    [Google Scholar]
  75. Pratt LA, Kolter R. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 1998; 30:285–293 [CrossRef][PubMed]
    [Google Scholar]
  76. Crawford RW, Reeve KE, Gunn JS. Flagellated but not hyperfimbriated Salmonella enterica serovar typhimurium attaches to and forms biofilms on cholesterol-coated surfaces. J Bacteriol 2010; 192:2981–2990 [CrossRef][PubMed]
    [Google Scholar]
  77. Salehi S, Howe K, Lawrence ML, Brooks JP, Bailey RH et al. Salmonella enterica serovar Kentucky flagella are required for broiler skin adhesion and Caco-2 cell invasion. Appl Environ Microbiol 2017; 83: [CrossRef][PubMed]
    [Google Scholar]
  78. Tan MSF, White AP, Rahman S, Dykes GA. Role of fimbriae, flagella and cellulose on the attachment of Salmonella typhimurium ATCC 14028 to plant cell wall models. PLoS One 2016; 11:e0158311 [CrossRef][PubMed]
    [Google Scholar]
  79. Sourjik V, Wingreen NS. Responding to chemical gradients: bacterial chemotaxis. Curr Opin Cell Biol 2012; 24:262–268 [CrossRef][PubMed]
    [Google Scholar]
  80. Macnab RM. Genetics and biogenesis of bacterial flagella. Annu Rev Genet 1992; 26:131–158 [CrossRef][PubMed]
    [Google Scholar]
  81. Ryjenkov DA, Tarutina M, Moskvin OV, Gomelsky M. Cyclic diguanylate is a ubiquitous signaling molecule in bacteria: insights into biochemistry of the GGDEF protein domain. J Bacteriol 2005; 187:1792–1798 [CrossRef][PubMed]
    [Google Scholar]
  82. Paul K, Nieto V, Carlquist WC, Blair DF, Harshey RM. The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a "backstop brake" mechanism. Mol Cell 2010; 38:128–139 [CrossRef][PubMed]
    [Google Scholar]
  83. Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 2010; 35:322–332 [CrossRef][PubMed]
    [Google Scholar]
  84. Jensen Peter Østrup, Givskov M, Bjarnsholt T, Moser C. The immune system vs. Pseudomonas aeruginosa biofilms. FEMS Immunol Med Microbiol 2010; 59:292–305 [CrossRef][PubMed]
    [Google Scholar]
  85. Aviles B, Klotz C, Eifert J, Williams R, Ponder M. Biofilms promote survival and virulence of Salmonella enterica SV. Tennessee during prolonged dry storage and after passage through an in vitro digestion system. Int J Food Microbiol 2013; 162:252–259 [CrossRef][PubMed]
    [Google Scholar]
  86. Bridier A, Briandet R, Thomas V, Dubois-Brissonnet F. Resistance of bacterial biofilms to disinfectants: a review. Biofouling 2011; 27:1017–1032 [CrossRef][PubMed]
    [Google Scholar]
  87. Wenzel RP. Health care-associated infections: major issues in the early years of the 21st century. Clin Infect Dis 2007; 45 Suppl 1:S85–S88 [CrossRef][PubMed]
    [Google Scholar]
  88. Van Houdt R, Michiels CW. Biofilm formation and the food industry, a focus on the bacterial outer surface. J Appl Microbiol 2010; 109:1117–1131 [CrossRef][PubMed]
    [Google Scholar]
  89. Coetser SE, Cloete TE. Biofouling and biocorrosion in industrial water systems. Crit Rev Microbiol 2005; 31:213–232 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000900
Loading
/content/journal/micro/10.1099/mic.0.000900
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error