1887

Abstract

is a lipophilic cutaneous commensal yeast and associated with various skin disorders. The yeast also causes bloodstream infection via intravascular catheters and can be detected even in human gut microbiota. Ambient pH is one of the major factors that affect the physiology and metabolism of several pathogenic microorganisms. Although dynamic changes of pH environment in different parts of the body is a great challenge for to confront, the role that ambient pH plays in is largely unknown. In this study, we investigated the impact of ambient pH on physiology and expression of lipases in grown under different pH conditions. The yeast was able to grow in media ranging from pH 4 to 10 without morphological alteration. Elevation in pH value enhanced the extracellular lipase activity but decreased that of intracellular lipase. The qPCR results revealed that a set of functional lipase genes, , were constitutively expressed regardless of pH conditions or exposure time. Based on the data, we conclude that the external pH plays a promotional role in the secretion of lipases but exerts less effect on transcription of the genes and morphology in .

Keyword(s): gene expression , growth , lipase , Malassezia and pH
Funding
This study was supported by the:
  • Chiang Mai Rajabhat University (Award Research grants (2018))
    • Principle Award Recipient: Weerapong Juntachai
  • Thailand Research Fund (Award MRG6180251)
    • Principle Award Recipient: Sittinan Chanarat
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000879
2019-12-20
2024-12-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/166/3/288.html?itemId=/content/journal/micro/10.1099/mic.0.000879&mimeType=html&fmt=ahah

References

  1. Guého E, Boekhout T, Ashbee HR, Guillot J, Van Belkum A et al. The role of Malassezia species in the ecology of human skin and as pathogens. Med Mycol 1998; 36:220–229[PubMed]
    [Google Scholar]
  2. Xu J, Saunders CW, Hu P, Grant RA, Boekhout T et al. Dandruff-associated Malassezia genomes reveal convergent and divergent virulence traits shared with plant and human fungal pathogens. Proc Natl Acad Sci USA 2007; 104:18730–18735 [View Article][PubMed]
    [Google Scholar]
  3. Oh J, Byrd AL, Deming C, Conlan S, Kong HH et al. Biogeography and individuality shape function in the human skin metagenome. Nature 2014; 514:59–64 [View Article][PubMed]
    [Google Scholar]
  4. Cabañes FJ, Coutinho S Dall' Acqua, Puig L, Bragulat MR, Castellá G. New lipid-dependent Malassezia species from parrots. Rev Iberoam Micol 2016; 33:92–99 [View Article][PubMed]
    [Google Scholar]
  5. Honnavar P, Prasad GS, Ghosh A, Dogra S, Handa S et al. Malassezia arunalokei sp. nov., a novel yeast species isolated from seborrheic dermatitis patients and healthy individuals from India. J Clin Microbiol 2016; 54:1826–1834 [View Article][PubMed]
    [Google Scholar]
  6. Lorch JM, Palmer JM, Vanderwolf KJ, Schmidt KZ, Verant ML et al. Malassezia vespertilionis sp. nov.: a new cold-tolerant species of yeast isolated from bats. Persoonia 2018; 41:56–70 [View Article][PubMed]
    [Google Scholar]
  7. Yim SM, Kim JY, Ko JH, Lee YW, Choe YB et al. Molecular analysis of Malassezia microflora on the skin of the patients with atopic dermatitis. Ann Dermatol 2010; 22:41–47 [View Article][PubMed]
    [Google Scholar]
  8. Harada K, Saito M, Sugita T, Tsuboi R. Malassezia species and their associated skin diseases. J Dermatol 2015; 42:250–257 [View Article][PubMed]
    [Google Scholar]
  9. Prohic A, Jovovic Sadikovic T, Krupalija-Fazlic M, Kuskunovic-Vlahovljak S. Malassezia species in healthy skin and in dermatological conditions. Int J Dermatol 2016; 55:494–504 [View Article][PubMed]
    [Google Scholar]
  10. Tragiannidis A, Bisping G, Koehler G, Groll AH. Minireview: Malassezia infections in immunocompromised patients. Mycoses 2010; 53:187–195 [View Article][PubMed]
    [Google Scholar]
  11. Gaitanis G, Magiatis P, Hantschke M, Bassukas ID, Velegraki A. The Malassezia genus in skin and systemic diseases. Clin Microbiol Rev 2012; 25:106–141 [View Article][PubMed]
    [Google Scholar]
  12. Nash AK, Auchtung TA, Wong MC, Smith DP, Gesell JR et al. The gut mycobiome of the human microbiome project healthy cohort. Microbiome 2017; 5:153 [View Article][PubMed]
    [Google Scholar]
  13. Jaeger KE, Ransac S, Dijkstra BW, Colson C, van Heuvel M et al. Bacterial lipases.. FEMS Microbiol Rev 1994; 15:29–63 [View Article][PubMed]
    [Google Scholar]
  14. Juntachai W, Oura T, Murayama SY, Kajiwara S. The lipolytic enzymes activities of Malassezia species. Med Mycol 2009; 47:477–484 [View Article][PubMed]
    [Google Scholar]
  15. Lee YW, Lee SY, Lee Y, Jung WH. Evaluation of expression of lipases and phospholipases of Malassezia restricta in patients with seborrheic dermatitis. Ann Dermatol 2013; 25:310–314 [View Article][PubMed]
    [Google Scholar]
  16. Park M, Cho Y-J, Lee YW, Jung WH. Whole genome sequencing analysis of the cutaneous pathogenic yeast Malassezia restricta and identification of the major lipase expressed on the scalp of patients with dandruff. Mycoses 2017; 60:188–197 [View Article][PubMed]
    [Google Scholar]
  17. Gfatter R, Hackl P, Braun F. Effects of soap and detergents on skin surface pH, stratum corneum hydration and fat content in infants. Dermatology 1997; 195:258–262 [View Article][PubMed]
    [Google Scholar]
  18. Proksch E. pH in nature, humans and skin. J Dermatol 2018; 45:1044–1052 [View Article][PubMed]
    [Google Scholar]
  19. Ramon AM, Porta A, Fonzi WA. Effect of environmental pH on morphological development of Candida albicans is mediated via the PacC-related transcription factor encoded by PRR2. J Bacteriol 1999; 181:7524–7530[PubMed]
    [Google Scholar]
  20. Sherrington SL, Sorsby E, Mahtey N, Kumwenda P, Lenardon MD et al. Adaptation of Candida albicans to environmental pH induces cell wall remodelling and enhances innate immune recognition. PLoS Pathog 2017; 13:e1006403 [View Article][PubMed]
    [Google Scholar]
  21. Du H, Huang G. Environmental pH adaption and morphological transitions in Candida albicans . Curr Genet 2016; 62:283–286 [View Article][PubMed]
    [Google Scholar]
  22. Runeman B, Faergemann J, Larkö O. Experimental Candida albicans lesions in healthy humans: dependence on skin pH. Acta Derm Venereol 2000; 80:421–424 [View Article][PubMed]
    [Google Scholar]
  23. Matousek JL, Campbell KL, Kakoma I, Solter PF, Schaeffer DJ. Evaluation of the effect of pH on in vitro growth of Malassezia pachydermatis . Can J Vet Res 2003; 67:56–59[PubMed]
    [Google Scholar]
  24. Selander C, Zargari A, Möllby R, Rasool O, Scheynius A. Higher pH level, corresponding to that on the skin of patients with atopic eczema, stimulates the release of Malassezia sympodialis allergens. Allergy 2006; 61:1002–1008 [View Article][PubMed]
    [Google Scholar]
  25. Juntachai W, Kajiwara S. Differential expression of extracellular lipase and protease activities of mycelial and yeast forms in Malassezia furfur . Mycopathologia 2015; 180:143–151 [View Article][PubMed]
    [Google Scholar]
  26. Brunke S, Hube B. MfLIP1, a gene encoding an extracellular lipase of the lipid-dependent fungus Malassezia furfur . Microbiology 2006; 152:547–554 [View Article][PubMed]
    [Google Scholar]
  27. Farwanah H, Raith K, Neubert RHH, Wohlrab J. Ceramide profiles of the uninvolved skin in atopic dermatitis and psoriasis are comparable to those of healthy skin. Arch Dermatol Res 2005; 296:514–521 [View Article][PubMed]
    [Google Scholar]
  28. Vylkova S, Carman AJ, Danhof HA, Collette JR, Zhou H et al. The fungal pathogen Candida albicans autoinduces hyphal morphogenesis by raising extracellular pH. mBio 2011; 2:e00055–11 [View Article][PubMed]
    [Google Scholar]
  29. Faergemann J, Fredriksson T. Experimental infections in rabbits and humans with Pityrosporum orbiculare and P. ovale . J Invest Dermatol 1981; 77:314–318 [View Article][PubMed]
    [Google Scholar]
  30. Konno N, Ishii M, Nagai A, Watanabe T, Ogasawara A et al. Mechanism of Candida albicans transformation in response to changes of pH. Biol Pharm Bull 2006; 29:923–926 [View Article][PubMed]
    [Google Scholar]
  31. Juntachai W, Oura T, Kajiwara S. Purification and characterization of a secretory lipolytic enzyme, MgLIP2, from Malassezia globosa . Microbiology 2011; 157:3492–3499 [View Article][PubMed]
    [Google Scholar]
  32. Park M, Jung WH, Han SH, Lee YH, Lee YW. Characterisation and expression analysis of MrLip1, a class 3 family lipase of Malassezia restricta . Mycoses 2015; 58:671–678 [View Article][PubMed]
    [Google Scholar]
  33. Plotkin LI, Squiquera L, Mathov I, Galimberti R, Leoni J. Characterization of the lipase activity of Malassezia furfur . J Med Vet Mycol 1996; 34:43–48 [View Article][PubMed]
    [Google Scholar]
  34. Shibata N, Okanuma N, Hirai K, Arikawa K, Kimura M et al. Isolation, characterization and molecular cloning of a lipolytic enzyme secreted from Malassezia pachydermatis . FEMS Microbiol Lett 2006; 256:137–144 [View Article][PubMed]
    [Google Scholar]
  35. DeAngelis YM, Saunders CW, Johnstone KR, Reeder NL, Coleman CG et al. Isolation and expression of a Malassezia globosa lipase gene, LIP1 . J Invest Dermatol 2007; 127:2138–2146 [View Article][PubMed]
    [Google Scholar]
  36. Lopes DB, Fraga LP, Fleuri LF, Macedo GA. Lipase and esterase: to what extent can this classification be applied accurately?. Ciênc Tecnol Aliment 2011; 31:603–613 [View Article]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.000879
Loading
/content/journal/micro/10.1099/mic.0.000879
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error