1887

Abstract

(Pa) and (Af), the commonest bacterium and fungus in compromised host airways, compete for iron (Fe). The Pseudomonas quinolone signal (PQS), a Pa quorum sensing molecule, also chelates Fe, and delivers Fe to the Pa cell membrane using Pa siderophores. In models of Af biofilm formation or preformed biofilms, PQS inhibited Af in a low Fe environment. AfΔ (mutant unable to produce siderophores) biofilm was more sensitive to PQS inhibition than wild-type (WT), as was planktonic AfΔ growth. PQS decreased WT Af growth on agar. All these inhibitory actions were reversed by Fe. The Pa siderophore pyoverdin, or Af siderophore inhibitor celastrol, act cooperatively with PQS in Af inhibition. These findings all indicate PQS inhibition is owing to Fe chelation. , in high Fe environments PQS Af biofilm at 1/100 to 1/2000 Fe concentration required for Fe alone to enhance. Planktonic Af growth, and on agar, Af conidiation, were also enhanced by PQS+Fe compared to Fe alone. In contrast, neither AfΔ biofilm, nor planktonic AfΔ, were enhanced by PQS-Fe compared to Fe. When Af siderophore ferricrocin (FC),+PQS, were added to AfΔ Af was then boosted more than by FC alone. Moreover, FC+PQS+Fe boosted AfΔ more than Fe, FC, FC+Fe, PQS+FC or PQS+Fe. Thus PQS-Fe maximal stimulation requires Af siderophores. PQS inhibits Af via chelation under low Fe conditions. In a high Fe environment, PQS paradoxically stimulates Af efficiently, and this involves Af siderophores. PQS production by Pa could stimulate Af in cystic fibrosis airways, where Fe homeostasis is altered and Fe levels increase, supporting fungal growth.

Keyword(s): Aspergillus , Iron , PQS and Pseudomonas
Funding
This study was supported by the:
  • Child Health Research Institute, Stanford Transdisciplinary Initiatives Program (Award CIMR no. 3777)
    • Principle Award Recipient: Not Applicable
  • John Flatley (Award CIMR no. 3770)
    • Principle Award Recipient: Not Applicable
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000858
2019-11-22
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/166/1/44.html?itemId=/content/journal/micro/10.1099/mic.0.000858&mimeType=html&fmt=ahah

References

  1. Williams HD, Davies JC. Basic science for the chest physician: Pseudomonas aeruginosa and the cystic fibrosis airway. Thorax 2012; 67:465–467 [View Article]
    [Google Scholar]
  2. Sabino R, Ferreira JAG, Moss RB, Valente J, Veríssimo C et al. Molecular epidemiology of Aspergillus collected from cystic fibrosis patients. J Cyst Fibros 2015; 14:474–481 [View Article]
    [Google Scholar]
  3. Smyth AR, Hurley MN. Targeting the Pseudomonas aeruginosa biofilm to combat infections in patients with cystic fibrosis. Drugs Future 2010; 35:1007–1014 [View Article]
    [Google Scholar]
  4. Fillaux J, Brémont F, Murris M, Cassaing S, Rittié JL et al. Assessment of Aspergillus sensitization or persistent carriage as a factor in lung function impairment in cystic fibrosis patients. Scand J Infect Dis 2012; 44:842–847 [View Article]
    [Google Scholar]
  5. Speirs JJ, van der Ent CK, Beekman JM. Effects of Aspergillus fumigatus colonization on lung function in cystic fibrosis. Curr Opin Pulm Med 2012; 18:632–638 [View Article]
    [Google Scholar]
  6. Ramsey KA, Ranganathan S, Park J, Skoric B, Adams AM et al. Early respiratory infection is associated with reduced spirometry in children with cystic fibrosis. Am J Respir Crit Care Med 2014; 190:1111–1116 [View Article]
    [Google Scholar]
  7. de Boer K, Vandemheen KL, Tullis E, Doucette S, Fergusson D et al. Exacerbation frequency and clinical outcomes in adult patients with cystic fibrosis. Thorax 2011; 66:680–685 [View Article]
    [Google Scholar]
  8. Nicolai T, Arleth S, Spaeth A, Bertele-Harms RM, Harms HK. Correlation of IgE antibody titer to Aspergillus fumigatus with decreased lung function in cystic fibrosis. Pediatr Pulmonol 1990; 8:12–15 [View Article]
    [Google Scholar]
  9. Forsyth KD, Hohmann AW, Martin AJ, Bradley J. IgG antibodies to Aspergillus fumigatus in cystic fibrosis: a laboratory correlate of disease activity. Arch Dis Child 1988; 63:953–957 [View Article]
    [Google Scholar]
  10. Schønheyder H, Jensen T, Høiby N, Andersen P, Koch C. Frequency of Aspergillus fumigatus isolates and antibodies to Aspergillus antigens in cystic fibrosis. Acta Path Microbiol Immunol Scand 1985; 93B:105–112 [View Article]
    [Google Scholar]
  11. Shoseyov D, Brownlee KG, Conway SP, Kerem E. Aspergillus bronchitis in cystic fibrosis. Chest 2006; 130:222–226 [View Article]
    [Google Scholar]
  12. Coughlan CA, Chotirmall SH, Renwick J, Hassan T, Low TB et al. The Effect of Aspergillus fumigatus Infection on Vitamin D Receptor Expression in Cystic Fibrosis. Am J Respir Crit Care Med 2012; 186:999–1007 [View Article]
    [Google Scholar]
  13. Amin R, Dupuis A, Aaron SD, Ratjen F. The effect of chronic infection with Aspergillus fumigatus on lung function and hospitalization in patients with cystic fibrosis. Chest 2010; 137:171–176 [View Article]
    [Google Scholar]
  14. Tashiro Y, Yawata Y, Toyofuku M, Uchiyama H, Nomura N. Interspecies interaction between Pseudomonas aeruginosa and other microorganisms. Microb Environ 2013; 28:13–24 [View Article]
    [Google Scholar]
  15. Haas H. Fungal siderophore metabolism with a focus on Aspergillus fumigatus . Nat Prod Rep 2014; 31:1266–1276 [View Article]
    [Google Scholar]
  16. Schrettl M, Bignell E, Kragl C, Joechl C, Rogers T et al. Siderophore biosynthesis but not reductive iron assimilation is essential for Aspergillus fumigatus virulence. J Exp Med 2004; 200:1213–1219 [View Article]
    [Google Scholar]
  17. Sass G, Nazik H, Penner J, Shah H, Ansari SR et al. Studies of Pseudomonas aeruginosa mutants indicate pyoverdine as the central factor in inhibition of Aspergillus fumigatus biofilm. J Bacteriol 2018; 200:e00345–17 [View Article]
    [Google Scholar]
  18. Sass G, Ansari SR, Dietl A-M, Déziel E, Haas H et al. Intermicrobial interaction: Aspergillus fumigatus siderophores protect against competition by Pseudomonas aeruginosa . PLoS One 2019; 14:e0216085 [View Article]
    [Google Scholar]
  19. Mangan A. Interactions between some aural Aspergillus species and bacteria. J Gen Microbiol 1969; 58:261–266 [View Article]
    [Google Scholar]
  20. Blyth W, Forey A. The influence of respiratory bacteria and their biochemical fractions on Aspergillus fumigatus . Med Mycol 1971; 9:273–282 [View Article]
    [Google Scholar]
  21. Kerr JR, Taylor GW, Rutman A, Høiby N, Cole PJ et al. Pseudomonas aeruginosa pyocyanin and 1-hydroxyphenazine inhibit fungal growth. J Clin Pathol 1999; 52:385–387 [View Article]
    [Google Scholar]
  22. Mowat E, Rajendran R, Williams C, McCulloch E, Jones B et al. Pseudomonas aeruginosa and their small diffusible extracellular molecules inhibit Aspergillus fumigatus biofilm formation. FEMS Microbiol Lett 2010; 313:96–102 [View Article]
    [Google Scholar]
  23. Holcombe LJ, McAlester G, Munro CA, Enjalbert B, Brown AJP et al. Pseudomonas aeruginosa secreted factors impair biofilm development in Candida albicans . Microbiology 2010; 156:1476–1486 [View Article]
    [Google Scholar]
  24. Bandara HMHN, K Cheung BP, Watt RM, Jin LJ, Samaranayake LP. Pseudomonas aeruginosa lipopolysaccharide inhibits C andida albicans hyphae formation and alters gene expression during biofilm development. Mol Oral Microbiol 2013; 28:54–69 [View Article]
    [Google Scholar]
  25. Bredenbruch F, Geffers R, Nimtz M, Buer J, Häussler S. The Pseudomonas aeruginosa quinolone signal (PQS) has an iron-chelating activity. Environ Microbiol 2006; 8:1318–1329 [View Article]
    [Google Scholar]
  26. Diggle SP, Matthijs S, Wright VJ, Fletcher MP, Chhabra SR et al. The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chem Biol 2007; 14:87–96 [View Article]
    [Google Scholar]
  27. Häussler S, Becker T. The Pseudomonas quinolone signal (PQS) balances life and death in Pseudomonas aeruginosa populations. PLoS Pathog 2008; 4:e1000166 [View Article]
    [Google Scholar]
  28. Heeb S, Fletcher MP, Chhabra SR, Diggle SP, Williams P et al. Quinolones: from antibiotics to autoinducers. FEMS Microbiol Rev 2011; 35:247–274 [View Article]
    [Google Scholar]
  29. Ilangovan A, Fletcher M, Rampioni G, Pustelny C, Rumbaugh K et al. Structural basis for native agonist and synthetic inhibitor recognition by the Pseudomonas aeruginosa quorum sensing regulator PqsR (MvfR). PLoS Pathog 2013; 9:e1003508 [View Article]
    [Google Scholar]
  30. Lin J, Zhang W, Cheng J, Yang X, Zhu K et al. A Pseudomonas T6SS effector recruits PQS-containing outer membrane vesicles for iron acquisition. Nat Commun 2017; 8:14888 [View Article]
    [Google Scholar]
  31. Llamas MA, Imperi F, Visca P, Lamont IL. Cell-Surface signaling in Pseudomonas: stress responses, iron transport, and pathogenicity. FEMS Microbiol Rev 2014; 38:569–597 [View Article]
    [Google Scholar]
  32. Nguyen AT, Jones JW, Cámara M, Williams P, Kane MA et al. Cystic fibrosis isolates of Pseudomonas aeruginosa retain iron-regulated antimicrobial activity against Staphylococcus aureus through the action of multiple alkylquinolones. Front Microbiol 2016; 7:1171 [View Article]
    [Google Scholar]
  33. Reen FJ, Mooij MJ, Holcombe LJ, McSweeney CM, McGlacken GP et al. The Pseudomonas quinolone signal (PQS), and its precursor HHQ, modulate interspecies and interkingdom behaviour. FEMS Microbiol Ecol 2011; 77:413–428 [View Article]
    [Google Scholar]
  34. Soh EY-C, Chhabra SR, Halliday N, Heeb S, Müller C et al. Biotic inactivation of the P seudomonas aeruginosa quinolone signal molecule. Environ Microbiol 2015; 17:4352–4365 [View Article]
    [Google Scholar]
  35. Wallner A, Blatzer M, Schrettl M, Sarg B, Lindner H et al. Ferricrocin, a siderophore involved in intra- and transcellular iron distribution in Aspergillus fumigatus . Appl Environ Microbiol 2009; 75:4194–4196 [View Article]
    [Google Scholar]
  36. Hsu JL, Manouvakhova OV, Clemons KV, Inayathullah M, Tu AB et al. Microhemorrhage-associated tissue iron enhances the risk for Aspergillus fumigatus invasion in a mouse model of airway transplantation. Sci Transl Med 2018; 10:eaag2616 [View Article]
    [Google Scholar]
  37. Lépine F, Déziel E, Milot S, Rahme LG. A stable isotope dilution assay for the quantification of the Pseudomonas quinolone signal in Pseudomonas aeruginosa cultures. Biochimica et Biophysica Acta (BBA) - General Subjects 2003; 1622:36–41 [View Article]
    [Google Scholar]
  38. Ferreira JAG, Penner JC, Moss RB, Haagensen JAJ, Clemons KV et al. Inhibition of Aspergillus fumigatus and its biofilm by Pseudomonas aeruginosa is dependent on the source, phenotype and growth conditions of the bacterium. PLoS One 2015; 10:e0134692 [View Article]
    [Google Scholar]
  39. Anand R, Clemons KV, Stevens DA. Effect of Anaerobiasis or hypoxia on Pseudomonas aeruginosa inhibition of Aspergillus fumigatus biofilm. Arch Microbiol 2017; 199:881–890 [View Article]
    [Google Scholar]
  40. Denning DW, Clemons KV, Hanson LH, Stevens DA. Restriction endonuclease analysis of total cellular DNA of Aspergillus fumigatus isolates of geographically and epidemiologically diverse origin. J Infect Dis 1990; 162:1151–1158 [View Article]
    [Google Scholar]
  41. Denning DW, Stevens DA. Efficacy of cilofungin alone and in combination with amphotericin B in a murine model of disseminated aspergillosis. Antimicrob Agents Chemother 1991; 35:1329–1333 [View Article]
    [Google Scholar]
  42. Moss BJ, Kim Y, Nandakumar MP, Marten MR. Quantifying metabolic activity of filamentous fungi using a colorimetric XTT assay. Biotechnol Prog 2008; 24:780–783 [View Article]
    [Google Scholar]
  43. Clinical and Laboratory Standards Institute document M38-A2. PA: Wayne; 2008
  44. Denning DW, Hanson LH, Perlman AM, Stevens DA. In vitro susceptibility and synergy studies of Aspergillus species to conventional and new agents. Diagn Microbiol Infect Dis 1992; 15:21–34 [View Article]
    [Google Scholar]
  45. Andrews MY, Santelli CM, Duckworth OW. Layer plate Cas assay for the quantitation of siderophore production and determination of exudation patterns for fungi. J Microbiol Methods 2016; 121:41–43 [View Article]
    [Google Scholar]
  46. Matthaiou EI, Sass G, Stevens DA, Hsu JL. Iron: an essential nutrient for Aspergillus fumigatus and a fulcrum for pathogenesis. Curr Opin Infect Dis 2018; 31:506–511 [View Article]
    [Google Scholar]
  47. Martín Del Campo JS, Vogelaar N, Tolani K, Kizjakina K, Harich K et al. Inhibition of the flavin-dependent monooxygenase siderophore A (SidA) blocks siderophore biosynthesis and Aspergillus fumigatus growth. ACS Chem Biol 2016; 11:3035–3042 [View Article]
    [Google Scholar]
  48. Nazik H, Penner JC, Ferreira JA, Haagensen JAJ, Cohen K et al. Effects of iron chelators on the formation and development of Aspergillus fumigatus biofilm. Antimicrob Agents Chemother 2015; 59:6514–6520 [View Article]
    [Google Scholar]
  49. Werner E, Roe F, Bugnicourt A, Franklin MJ, Heydorn A et al. Stratified growth in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 2004; 70:6188–6196 [View Article]
    [Google Scholar]
  50. Bresgen N, Eckl PM. Oxidative stress and the homeodynamics of iron metabolism. Biomolecules 2015; 5:808–847 [View Article]
    [Google Scholar]
  51. Kurucz V, Krüger T, Antal K, Dietl A-M, Haas H et al. Additional oxidative stress reroutes the global response of Aspergillus fumigatus to iron depletion. BMC Genomics 2018; 19:357 [View Article]
    [Google Scholar]
  52. Nguyen AT, Jones JW, Ruge MA, Kane MA, Oglesby-Sherrouse AG. Iron depletion enhances production of antimicrobials by Pseudomonas aeruginosa . J Bacteriol 2015; 197:2265–2275 [View Article]
    [Google Scholar]
  53. Rella A, Yang MW, Gruber J, Montagna MT, Luberto C et al. Pseudomonas aeruginosa inhibits the growth of Cryptococcus species. Mycopathologia 2012; 173:451–461 [View Article]
    [Google Scholar]
  54. Reen FJ, Phelan JP, Woods DF, Shanahan R, Cano R et al. Harnessing bacterial signals for suppression of biofilm formation in the nosocomial fungal pathogen Aspergillus fumigatus . Front Microbiol 2016; 7:2074–2086 [View Article]
    [Google Scholar]
  55. Abdalla MY, Hoke T, Seravalli J, Switzer BL, Bavitz M et al. Pseudomonas quinolone signal induces oxidative stress and inhibits heme oxygenase-1 expression in lung epithelial cells. Infect Immun 2017; 85:e00176–17 [View Article]
    [Google Scholar]
  56. Qaisar U, Kruczek CJ, Azeem M, Javaid N, Colmer-Hamood JA et al. The Pseudomonas aeruginosa extracellular secondary metabolite, Paerucumarin, chelates iron and is not localized to extracellular membrane vesicles. J Microbiol 2016; 54:573–581 [View Article]
    [Google Scholar]
  57. Smith K, Rajendran R, Kerr S, Lappin DF, Mackay WG et al. Aspergillus fumigatus enhances elastase production in Pseudomonas aeruginosa co-cultures. Med Mycol 2015; 53:645–655 [View Article]
    [Google Scholar]
  58. Moree WJ, Phelan VV, Wu C-H, Bandeira N, Cornett DS et al. Interkingdom metabolic transformations captured by microbial imaging mass spectrometry. Proc Natl Acad Sci USA 2012; 109:13811–13816 [View Article]
    [Google Scholar]
  59. Schertzer JW, Brown SA, Whiteley M. Oxygen levels rapidly modulate Pseudomonas aeruginosa social behaviours via substrate limitation of PqsH. Mol Microbiol 2010; 77:1527–1538 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000858
Loading
/content/journal/micro/10.1099/mic.0.000858
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error