1887

Abstract

Small non-coding sRNAs have versatile roles in regulating bacterial metabolism. Four short homologous sRNAs strongly expressed under conditions of growth arrest were recently identified. Here we report the detailed investigation of one of these, NcS27. sRNA NcS27 contains a short putative target recognition sequence, which is conserved throughout the order . This sequence is the reverse complement of the Shine–Dalgarno sequence of a large number of genes involved in transport and metabolism of amino acids and carbohydrates. Overexpression of NcS27 sRNA had a distinct impact on growth, attenuating growth on a variety of substrates such as phenylalanine, tyrosine, glycerol and galactose, while having no effect on growth on other substrates. Transcriptomics and proteomics of NcS27 overexpression and silencing mutants revealed numerous predicted targets changing expression, notably of genes involved in degradation of aromatic amino acids phenylalanine and tyrosine, and in transport of carbohydrates. The conserved target recognition sequence was essential for growth phenotypes and gene expression changes. Cumulatively, our data point to a role of NcS27 in regulating the shutdown of metabolism upon nutrient deprivation in . We propose ouble-airpin sRNA regulator as designation for .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000848
2019-10-01
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/165/10/1135.html?itemId=/content/journal/micro/10.1099/mic.0.000848&mimeType=html&fmt=ahah

References

  1. Storz G, Vogel J, Wassarman KM. Regulation by small RNAs in bacteria: expanding frontiers. Mol Cell 2011; 43:880–891 [View Article]
    [Google Scholar]
  2. Waters LS, Storz G. Regulatory RNAs in bacteria. Cell 2009; 136:615–628 [View Article]
    [Google Scholar]
  3. Barquist L, Vogel J. Accelerating discovery and functional analysis of small RNAs with new technologies. Annu Rev Genet 2015; 49:367–394 [View Article]
    [Google Scholar]
  4. Lalaouna D, Simoneau-Roy M, Lafontaine D, Massé E. Regulatory RNAs and target mRNA decay in prokaryotes. Biochim Biophys Acta Gene Regul Mech 1829; 2013:742–747
    [Google Scholar]
  5. Morita T, Aiba H. Rnase E action at a distance: degradation of target mRNAs mediated by an Hfq-binding small RNA in bacteria. Genes Dev 2011; 25:294–298 [View Article]
    [Google Scholar]
  6. Papenfort K, Vanderpool CK. Target activation by regulatory RNAs in bacteria. FEMS Microbiol Rev 2015; 39:362–378 [View Article]
    [Google Scholar]
  7. Updegrove TB, Zhang A, Storz G. Hfq: the flexible RNA matchmaker. Curr Opin Microbiol 2016; 30:133–138 [View Article]
    [Google Scholar]
  8. Panja S, Woodson SA. Hfq proximity and orientation controls RNA annealing. Nucleic Acids Res 2012; 40:8690–8697 [View Article]
    [Google Scholar]
  9. Gottesman S, Storz G. Bacterial small RNA regulators: versatile roles and rapidly evolving variations. Cold Spring Harb Perspect Biol 2011; 3:a003798 [View Article]
    [Google Scholar]
  10. Michaux C, Verneuil N, Hartke A, Giard J-C. Physiological roles of small RNA molecules. Microbiology 2014; 160:1007–1019 [View Article]
    [Google Scholar]
  11. Beisel CL, Storz G. Base pairing small RNAs and their roles in global regulatory networks. FEMS Microbiol Rev 2010; 34:866–882 [View Article]
    [Google Scholar]
  12. Bardill JP, Hammer BK. Non-coding sRNAs regulate virulence in the bacterial pathogen Vibrio cholerae . RNA Biol 2012; 9:392–401 [View Article]
    [Google Scholar]
  13. Gripenland J, Netterling S, Loh E, Tiensuu T, Toledo-Arana A et al. Rnas: regulators of bacterial virulence. Nat Rev Microbiol 2010; 8:857–866 [View Article]
    [Google Scholar]
  14. Chambers JR, Sauer K. Small RNAs and their role in biofilm formation. Trends Microbiol 2013; 21:39–49 [View Article]
    [Google Scholar]
  15. Mahenthiralingam E, Urban TA, Goldberg JB. The multifarious, multireplicon Burkholderia cepacia complex. Nat Rev Microbiol 2005; 3:144–156 [View Article]
    [Google Scholar]
  16. LiPuma JJ. Update on the Burkholderia cepacia complex. Curr Opin Pulm Med 2005; 11:528–533 [View Article]
    [Google Scholar]
  17. Holden MTG, Seth-Smith HMB, Crossman LC, Sebaihia M, Bentley SD et al. The genome of Burkholderia cenocepacia J2315, an epidemic pathogen of cystic fibrosis patients. J Bacteriol 2009; 191:261–277 [View Article]
    [Google Scholar]
  18. Sass AM, Van Acker H, Förstner KU, Van Nieuwerburgh F, Deforce D et al. Genome-wide transcription start site profiling in biofilm-grown Burkholderia cenocepacia J2315. BMC Genomics 2015; 16:775 [View Article]
    [Google Scholar]
  19. Sass A, Kiekens S, Coenye T. Identification of small RNAs abundant in Burkholderia cenocepacia biofilms reveal putative regulators with a potential role in carbon and iron metabolism. Sci Rep 2017; 7:15665 [View Article]
    [Google Scholar]
  20. Sass A, Everaert A, Van Acker H, Van den Driessche F, Coenye T. Targeting the Nonmevalonate Pathway in Burkholderia cenocepacia Increases Susceptibility to Certain β-Lactam Antibiotics. Antimicrob Agents Chemother 2018; 62:e02607-17–17 [View Article]
    [Google Scholar]
  21. Cardona ST, Valvano MA. An expression vector containing a rhamnose-inducible promoter provides tightly regulated gene expression in Burkholderia cenocepacia . Plasmid 2005; 54:219–228 [View Article]
    [Google Scholar]
  22. Kiekens S, Sass A, Van Nieuwerburgh F, Deforce D, Coenye T. The small RNA ncS35 regulates growth in Burkholderia cenocepacia J2315. mSphere 2018; 3:e005793–17 [View Article]
    [Google Scholar]
  23. Aubert DF, Hamad MA, Valvano MA. A markerless deletion method for genetic manipulation of Burkholderia cenocepacia and other multidrug-resistant gram-negative bacteria. Methods Mol Biol 2014; 1197:311–327 [View Article]
    [Google Scholar]
  24. Sass AM, Schmerk C, Agnoli K, Norville PJ, Eberl L et al. The unexpected discovery of a novel low-oxygen-activated locus for the anoxic persistence of Burkholderia cenocepacia . ISME J 2013; 7:1568–1581 [View Article]
    [Google Scholar]
  25. Will S, Joshi T, Hofacker IL, Stadler PF, Backofen R. LocARNA-P: accurate boundary prediction and improved detection of structural RNAs. RNA 2012; 18:900–914 [View Article]
    [Google Scholar]
  26. Reuter JS, Mathews DH. RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics 2010; 11:129 [View Article]
    [Google Scholar]
  27. Wright PR, Richter AS, Papenfort K, Mann M, Vogel J et al. Comparative Genomics Boosts Target Prediction for Bacterial Small Rnas 110 USA: Proc Nat Acad Sci; 2013 pp E3487–E3496
    [Google Scholar]
  28. Bailey TL, Johnson J, Grant CE, Noble WS. The MEME suite. Nucleic Acids Res 2015; 43:W39–W49 [View Article]
    [Google Scholar]
  29. Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F et al. Cdd: NCBI's conserved domain database. Nucleic Acids Res 2015; 43:D222–D226 [View Article]
    [Google Scholar]
  30. Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ et al. The Pfam protein families database. Nucleic Acids Res 2008; 36:D281–D288 [View Article]
    [Google Scholar]
  31. Price MN, Wetmore KM, Waters RJ, Callaghan M, Ray J et al. Mutant phenotypes for thousands of bacterial genes of unknown function. Nature 2018; 557:503–509 [View Article]
    [Google Scholar]
  32. Förstner KU, Vogel J, Sharma CM. READemption-a tool for the computational analysis of deep-sequencing-based transcriptome data. Bioinformatics 2014; 30:3421–3423 [View Article]
    [Google Scholar]
  33. Hoffmann S, Otto C, Kurtz S, Sharma CM, Khaitovich P et al. Fast mapping of short sequences with mismatches, insertions and deletions using index structures. PLoS Comput Biol 2009; 5:e1000502 [View Article]
    [Google Scholar]
  34. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. Genome Biol 2014; 15:550 [View Article]
    [Google Scholar]
  35. Depluverez S, Daled S, De Waele S, Planckaert S, Schoovaerts J et al. Microfluidics-based liquid chromatography/mass spectrometry multiple reaction monitoring approach for the relative quantification of Burkholderia cenocepacia secreted virulence factors. Rapid Commun Mass Spectrom 2018; 32:469–479 [View Article]
    [Google Scholar]
  36. Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 2008; 26:1367–1372 [View Article]
    [Google Scholar]
  37. Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 2016; 13:731–740 [View Article]
    [Google Scholar]
  38. Chao Y, Li L, Girodat D, Förstner KU, Said N et al. In Vivo Cleavage Map Illuminates the Central Role of RNase E in Coding and Non-coding RNA Pathways. Mol Cell 2017; 65:39–51 [View Article]
    [Google Scholar]
  39. Künne T, Swarts DC, Brouns SJJ. Planting the seed: target recognition of short guide RNAs. Trends Microbiol 2014; 22:74–83 [View Article]
    [Google Scholar]
  40. Sauer E, Weichenrieder O. Structural basis for RNA 3'-end recognition by Hfq 108 USA: Proc Nat Acad Sci; 2011 pp 13065–13070
    [Google Scholar]
  41. Moon K, Gottesman S. Competition among Hfq-binding small RNAs in Escherichia coli . Mol Microbiol 2011; 82:1545–1562 [View Article]
    [Google Scholar]
  42. Caswell CC, Oglesby-Sherrouse AG, Murphy ER. Sibling rivalry: related bacterial small RNAs and their redundant and non-redundant roles. Front Cell Infect Microbiol 2014; 4:151 [View Article]
    [Google Scholar]
  43. Papenfort K, Pfeiffer V, Mika F, Lucchini S, Hinton JCD et al. SigmaE-dependent small RNAs of Salmonella respond to membrane stress by accelerating global OMP mRNA decay. Mol Microbiol 2006; 62:1674–1688 [View Article]
    [Google Scholar]
  44. Berger M, Brock NL, Liesegang H, Dogs M, Preuth I et al. Genetic analysis of the upper phenylacetate catabolic pathway in the production of tropodithietic acid by Phaeobacter gallaeciensis . Appl Environ Microbiol 2012; 78:3539–3551 [View Article]
    [Google Scholar]
  45. Keith KE, Killip L, He P, Moran GR, Valvano MA. Burkholderia cenocepacia C5424 produces a pigment with antioxidant properties using a homogentisate intermediate. J Bacteriol 2007; 189:9057–9065 [View Article]
    [Google Scholar]
  46. Yudistira H, McClarty L, Bloodworth RAM, Hammond SA, Butcher H et al. Phenylalanine induces Burkholderia cenocepacia phenylacetic acid catabolism through degradation to phenylacetyl-CoA in synthetic cystic fibrosis sputum medium. Microb Pathog 2011; 51:186–193 [View Article]
    [Google Scholar]
  47. Gonyar LA, Fankhauser SC, Goldberg JB. Single amino acid substitution in homogentisate 1,2-dioxygenase is responsible for pigmentation in a subset of Burkholderia cepacia complex isolates. Environ Microbiol Rep 2015; 7:180–187 [View Article]
    [Google Scholar]
  48. Imolorhe IA, Cardona ST. 3-Hydroxyphenylacetic Acid Induces the Burkholderia cenocepacia Phenylacetic Acid Degradation Pathway ? Toward Understanding the Contribution of Aromatic Catabolism to Pathogenesis. Front Cell Infect Microbiol 2011; 1:14 [View Article]
    [Google Scholar]
  49. Law A, Boulanger MJ. Defining a Structural and Kinetic Rationale for Paralogous Copies of Phenylacetate-CoA Ligases from the Cystic Fibrosis Pathogen Burkholderia cenocepacia J2315. J. Biol. Chem. 2011; 286:15577–15585 [View Article]
    [Google Scholar]
  50. Aklujkar M, Risso C, Smith J, Beaulieu D, Dubay R et al. Anaerobic degradation of aromatic amino acids by the hyperthermophilic archaeon Ferroglobus placidus . Microbiology 2014; 160:2694–2709 [View Article]
    [Google Scholar]
  51. Song J, Jensen RA, PhhR JRA. PhhR, a divergently transcribed activator of the phenylalanine hydroxylase gene cluster of Pseudomonas aeruginosa . Mol Microbiol 1996; 22:497–507 [View Article]
    [Google Scholar]
  52. Law RJ, Hamlin JNR, Sivro A, McCorrister SJ, Cardama GA et al. A functional phenylacetic acid catabolic pathway is required for full pathogenicity of Burkholderia cenocepacia in the Caenorhabditis elegans host model. J Bacteriol 2008; 190:7209–7218 [View Article]
    [Google Scholar]
  53. Sass A, Marchbank A, Tullis E, Lipuma JJ, Mahenthiralingam E. Spontaneous and evolutionary changes in the antibiotic resistance of Burkholderia cenocepacia observed by global gene expression analysis. BMC Genomics 2011; 12:373 [View Article]
    [Google Scholar]
  54. Overlöper A, Kraus A, Gurski R, Wright PR, Georg J et al. Two separate modules of the conserved regulatory RNA AbcR1 address multiple target mRNAs in and outside of the translation initiation region. RNA Biol 2014; 11:624–640 [View Article]
    [Google Scholar]
  55. Bækkedal C, Haugen P. The spot 42 RNA: a regulatory small RNA with roles in the central metabolism. RNA Biol 2015; 12:1071–1077 [View Article]
    [Google Scholar]
  56. Beisel CL, Storz G. The base-pairing RNA spot 42 participates in a multioutput feedforward loop to help enact catabolite repression in Escherichia coli . Mol Cell 2011; 41:286–297 [View Article]
    [Google Scholar]
  57. Bartell JA, Yen P, Varga JJ, Goldberg JB, Papin JA. Comparative metabolic systems analysis of pathogenic Burkholderia . J Bacteriol 2014; 196:210–226 [View Article]
    [Google Scholar]
  58. Kimelman A, Levy A, Sberro H, Kidron S, Leavitt A et al. A vast collection of microbial genes that are toxic to bacteria. Genome Res 2012; 22:802–809 [View Article]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.000848
Loading
/content/journal/micro/10.1099/mic.0.000848
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error