1887

Abstract

Bacteria exist in polymicrobial environments and compete to prevail in a niche. The type VI secretion system (T6SS) is a nanomachine employed by Gram-negative bacteria to deliver effector proteins into target cells. Consequently, T6SS-positive bacteria produce a wealth of antibacterial effector proteins to promote their survival among a prokaryotic community. These toxins are loaded onto the VgrG–PAAR spike and Hcp tube of the T6SS apparatus and recent work has started to document the specificity of effectors for certain spike components. encodes several PAAR proteins, whose roles have been poorly investigated. Here we describe a phospholipase family antibacterial effector immunity pair from and demonstrate that a specific PAAR protein is necessary for the delivery of the effector and its cognate VgrG. Furthermore, the PAAR protein appears to restrict the delivery of other phospholipase effectors that utilise distinct VgrG proteins. We provide further evidence for competition for PAAR protein recruitment to the T6SS apparatus, which determines the identities of the delivered effectors.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000842
2019-11-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/165/11/1203.html?itemId=/content/journal/micro/10.1099/mic.0.000842&mimeType=html&fmt=ahah

References

  1. Cianfanelli FR, Monlezun L, Coulthurst SJ. Aim, load, fire: the type VI secretion system, a bacterial Nanoweapon. Trends Microbiol 2016b;24:51–62 [CrossRef]
    [Google Scholar]
  2. Hachani A, Wood TE, Filloux A. Type VI secretion and anti-host effectors. Curr Opin Microbiol 2016;29:81–93 [CrossRef]
    [Google Scholar]
  3. Trunk K, Peltier J, Liu YC, Dill BD, Walker L et al. The type VI secretion system deploys antifungal effectors against microbial competitors. Nat Microbiol 2018;3:920–931 [CrossRef]
    [Google Scholar]
  4. Russell AB, Peterson SB, Mougous JD. Type VI secretion system effectors: poisons with a purpose. Nat Rev Microbiol 2014a;12:137–148 [CrossRef]
    [Google Scholar]
  5. Ballister ER, Lai AH, Zuckermann RN, Cheng Y, Mougous JD. In vitro self-assembly of tailorable nanotubes from a simple protein building block. Proc Natl Acad Sci U S A 2008;105:3733–3738 [CrossRef]
    [Google Scholar]
  6. Leiman PG, Basler M, Ramagopal UA, Bonanno JB, Sauder JM et al. Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc Natl Acad Sci U S A 2009;106:4154–4159 [CrossRef]
    [Google Scholar]
  7. Shneider MM, Buth SA, Ho BT, Basler M, Mekalanos JJ et al. PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature 2013;500:350–353 [CrossRef]
    [Google Scholar]
  8. Hachani A, Allsopp LP, Oduko Y, Filloux A. The VgrG proteins are "à la carte" delivery systems for bacterial type VI effectors. J Biol Chem 2014;289:17872–17884 [CrossRef]
    [Google Scholar]
  9. Whitney JC, Beck CM, Goo YA, Russell AB, Harding BN et al. Genetically distinct pathways guide effector export through the type VI secretion system. Mol Microbiol 2014;92:529–542 [CrossRef]
    [Google Scholar]
  10. Bondage DD, Lin JS, Ma LS, Kuo CH, Lai EM. Vgrg C terminus confers the type VI effector transport specificity and is required for binding with PAAR and adaptor-effector complex. Proc Natl Acad Sci U S A 2016;113:E3931–E3940 [CrossRef]
    [Google Scholar]
  11. Cianfanelli FR, Alcoforado Diniz J, Guo M, De Cesare V, Trost M et al. Vgrg and PAAR proteins define distinct versions of a functional type VI secretion system. PLoS Pathog 2016a;12:e1005735 [CrossRef]
    [Google Scholar]
  12. Dong TG, Ho BT, Yoder-Himes DR, Mekalanos JJ. Identification of T6SS-dependent effector and immunity proteins by Tn-seq in Vibrio cholerae. Proc Natl Acad Sci U S A 2013;110:2623–2628 [CrossRef]
    [Google Scholar]
  13. Hood RD, Singh P, Hsu F, Güvener T, Carl MA et al. A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 2010;7:25–37 [CrossRef]
    [Google Scholar]
  14. Jiang F, Waterfield NR, Yang J, Yang G, Jin Q. A Pseudomonas aeruginosa type VI secretion phospholipase D effector targets both prokaryotic and eukaryotic cells. Cell Host Microbe 2014;15:600–610 [CrossRef]
    [Google Scholar]
  15. Russell AB, LeRoux M, Hathazi K, Agnello DM, Ishikawa T et al. Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors. Nature 2013;496:508–512 [CrossRef]
    [Google Scholar]
  16. Pissaridou P, Allsopp LP, Wettstadt S, Howard SA, Mavridou DA I et al. The Pseudomonas aeruginosa T6SS-VgrG1b spike is topped by a PAAR protein eliciting DNA damage to bacterial competitors. Proc Natl Acad Sci U S A 2018;201814181
    [Google Scholar]
  17. Lesic B, Starkey M, He J, Hazan R, Rahme LG. Quorum sensing differentially regulates Pseudomonas aeruginosa type VI secretion locus I and homologous loci II and III, which are required for pathogenesis. Microbiology 2009;155:2845–2855 [CrossRef]
    [Google Scholar]
  18. Allsopp LP, Wood TE, Howard SA, Maggiorelli F, Nolan LM et al. RsmA and AmrZ orchestrate the assembly of all three type VI secretion systems in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2017;114:7707–7712 [CrossRef]
    [Google Scholar]
  19. Burkinshaw BJ, Liang X, Wong M, Le ANH, Lam L et al. A type VI secretion system effector delivery mechanism dependent on PAAR and a chaperone-co-chaperone complex. Nat Microbiol 2018;3:632–640 [CrossRef]
    [Google Scholar]
  20. Sana TG, Baumann C, Merdes A, Soscia C, Rattei T et al. Internalization of Pseudomonas aeruginosa Strain PAO1 into Epithelial Cells Is Promoted by Interaction of a T6SS Effector with the Microtubule Network. MBio 2015;6:e00712 [CrossRef]
    [Google Scholar]
  21. Pukatzki S, Ma AT, Revel AT, Sturtevant D, Mekalanos JJ. Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci U S A 2007;104:15508–15513 [CrossRef]
    [Google Scholar]
  22. Rigard M, Bröms JE, Mosnier A, Hologne M, Martin A et al. Francisella tularensis IglG Belongs to a Novel Family of PAAR-Like T6SS Proteins and Harbors a Unique N-terminal Extension Required for Virulence. PLoS Pathog 2016;12:e1005821–1005833 [CrossRef]
    [Google Scholar]
  23. Russell AB, Wexler AG, Harding BN, Whitney JC, Bohn AJ et al. A type VI secretion-related pathway in Bacteroidetes mediates interbacterial antagonism. Cell Host Microbe 2014b;16:227–236 [CrossRef]
    [Google Scholar]
  24. Barret M, Egan F, Fargier E, Morrissey JP, O'Gara F. Genomic analysis of the type VI secretion systems in Pseudomonas spp.: novel clusters and putative effectors uncovered. Microbiology 2011;157:1726–1739 [CrossRef]
    [Google Scholar]
  25. Koskiniemi S, Lamoureux JG, Nikolakakis KC, t'Kint de Roodenbeke C, Kaplan MD et al. Rhs proteins from diverse bacteria mediate intercellular competition. Proc Natl Acad Sci U S A 2013;110:7032–7037 [CrossRef]
    [Google Scholar]
  26. Russell AB, Hood RD, Bui NK, LeRoux M, Vollmer W et al. Type VI secretion delivers bacteriolytic effectors to target cells. Nature 2011;475:343–347 [CrossRef]
    [Google Scholar]
  27. Whitney JC, Quentin D, Sawai S, LeRoux M, Harding BN et al. An interbacterial NAD(P)(+) glycohydrolase toxin requires elongation factor Tu for delivery to target cells. Cell 2015;163:607–619 [CrossRef]
    [Google Scholar]
  28. Hu H, Zhang H, Gao Z, Wang D, Liu G et al. Structure of the type VI secretion phospholipase effector TLE1 provides insight into its hydrolysis and membrane targeting. Acta Crystallogr D Biol Crystallogr 2014;70:2175–2185 [CrossRef]
    [Google Scholar]
  29. Jiang F, Wang X, Wang B, Chen L, Zhao Z et al. The Pseudomonas aeruginosa Type VI Secretion PGAP1-like Effector Induces Host Autophagy by Activating Endoplasmic Reticulum Stress. Cell Rep 2016;16:1502–1509 [CrossRef]
    [Google Scholar]
  30. Alcoforado Diniz J, Coulthurst SJ. Intraspecies competition in Serratia marcescens is mediated by type VI-Secreted Rhs effectors and a conserved Effector-Associated accessory protein. J Bacteriol 2015;197:2350–2360 [CrossRef]
    [Google Scholar]
  31. Flaugnatti N, Le TTH, Canaan S, Aschtgen M-S, Nguyen VS et al. A phospholipase A1 antibacterial type VI secretion effector interacts directly with the C-terminal domain of the VgrG spike protein for delivery. Mol Microbiol 2016;99:1099–1118 [CrossRef]
    [Google Scholar]
  32. Liang X, Moore R, Wilton M, Wong MJQ, Lam L et al. Identification of divergent type VI secretion effectors using a conserved chaperone domain. Proc Natl Acad Sci U S A 2015;112:9106–9111 [CrossRef]
    [Google Scholar]
  33. Ma J, Bao Y, Sun M, Dong W, Pan Z et al. Two functional type VI secretion systems in avian pathogenic Escherichia coli are involved in different pathogenic pathways. Infect Immun 2014;82:3867–3879 [CrossRef]
    [Google Scholar]
  34. Kolaskar AS, Reddy BV. A method to locate protein coding sequences in DNA of prokaryotic systems. Nucleic Acids Res 1985;13:185–194 [CrossRef]
    [Google Scholar]
  35. Jiang N, Tang L, Xie R, Li Z, Burkinshaw B et al. Vibrio parahaemolyticus RhsP represents a widespread group of pro-effectors for type VI secretion systems. Nat Commun 2018;9:3899 [CrossRef]
    [Google Scholar]
  36. Ventre I, Goodman AL, Vallet-Gely I, Vasseur P, Soscia C et al. Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. Proc Natl Acad Sci U S A 2006;103:171–176 [CrossRef]
    [Google Scholar]
  37. Hachani A, Lossi NS, Hamilton A, Jones C, Bleves S et al. Type VI secretion system in Pseudomonas aeruginosa: secretion and multimerization of VgrG proteins. J Biol Chem 2011;286:12317–12327 [CrossRef]
    [Google Scholar]
  38. Jones C, Hachani A, Manoli E, Filloux A. An rhs gene linked to the second type VI secretion cluster is a feature of the Pseudomonas aeruginosa strain PA14. J Bacteriol 2014;196:800–810 [CrossRef]
    [Google Scholar]
  39. Winsor GL, Griffiths EJ, Lo R, Dhillon BK, Shay JA et al. Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database. Nucleic Acids Research 2015;44 (November 2015:646–653
    [Google Scholar]
  40. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215:403–410 [CrossRef]
    [Google Scholar]
  41. Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 2017;30:1–7 [CrossRef]
    [Google Scholar]
  42. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef]
    [Google Scholar]
  43. Crooks GE, Hon G, Chandonia J-M, Brenner SE. Weblogo: a sequence logo generator. Genome Res 2004;14:1188–1190 [CrossRef]
    [Google Scholar]
  44. Nielsen H. Predicting secretory proteins with SignalP. Methods Mol Biol 2017;1611:59–73 [CrossRef]
    [Google Scholar]
  45. Herrero M, de Lorenzo V, Timmis KN. Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J Bacteriol 1990;172:6557–6567 [CrossRef]
    [Google Scholar]
  46. Miller VL, Mekalanos JJ. A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol 1988;170:2575–2583 [CrossRef]
    [Google Scholar]
  47. Becher A, Schweizer HP. Integration-proficient Pseudomonas aeruginosa vectors for isolation of single-copy chromosomal lacz and lux gene fusions. Biotechniques 2000;29:952pp. 948–.952 [CrossRef]
    [Google Scholar]
  48. Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA et al. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 1995;166:175–176 [CrossRef]
    [Google Scholar]
  49. Kaniga K, Delor I, Cornelis GR. A wide-host-range suicide vector for improving reverse genetics in gram-negative bacteria: inactivation of the blaA gene of Yersinia enterocolitica. Gene 1991;109:137–141 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000842
Loading
/content/journal/micro/10.1099/mic.0.000842
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error