1887

Abstract

Quorum sensing (QS) refers to chemical signalling between micro-organisms and defines a social concord among them. Once a threshold of signal is accumulated, certain virulent traits are regulated within bacteria in response to the surrounding environment. These virulence traits are known to contribute in the pathogenicity of bacterial diseases. To prevent the activation of virulence factors, QS is inhibited in different ways through a strategy known as quorum quenching. Various types of quorum-quenching strategies have already been used and characterized, as discussed in this review. The phenomenon of quorum quenching has long been considered as an alternative therapy to circumvent the ill-effects of the overuse of antibiotics. Considering the need to compare and evaluate various strategies, selected quorum-quenching paradigms are detailed along with their pros and cons in this review. A rationale has been drawn between naturally evolved quorum-quenching strategies and synthetically modified approaches adopted to abrogate QS.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000826
2019-07-02
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/mic.000826.zip/mic000826.html?itemId=/content/journal/micro/10.1099/mic.0.000826&mimeType=html&fmt=ahah

References

  1. Waters CM, Bassler BL. Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 2005;21:319–346 [CrossRef]
    [Google Scholar]
  2. Jayaraman A, Wood TK. Bacterial quorum sensing: signals, circuits, and implications for biofilms and disease. Annu Rev Biomed Eng 2008;10:145–167 [CrossRef]
    [Google Scholar]
  3. Srivastava D, Waters CM. A tangled web: regulatory connections between quorum sensing and Cyclic di-GMP. J Bacteriol 2012;194:4485–4493 [CrossRef]
    [Google Scholar]
  4. Vakulskas CA, Potts AH, Babitzke P, Ahmer BMM, Romeo T. Regulation of bacterial virulence by Csr (RSM) systems. Microbiol Mol Biol Rev 2015;79:193–224 [CrossRef]
    [Google Scholar]
  5. Okkotsu Y, Little AS, Schurr MJ. The Pseudomonas aeruginosa AlgZR two-component system coordinates multiple phenotypes. Front Cell Infect Microbiol 2014;4:82–82 [CrossRef]
    [Google Scholar]
  6. Atkinson S, Chang CY, Patrick HL, Buckley CMF, Wang Y et al. Functional interplay between the Yersinia pseudotuberculosis YpsRI and YtbRI quorum sensing systems modulates swimming motility by controlling expression of flhDC and fliA. Mol Microbiol 2008;69:137–151 [CrossRef]
    [Google Scholar]
  7. Zheng J, Shin OS, Cameron DE, Mekalanos JJ. Quorum sensing and a global regulator TsrA control expression of type VI secretion and virulence in Vibrio cholerae. Proc Natl Acad Sci U S A 2010;107:21128–21133 [CrossRef]
    [Google Scholar]
  8. Hongdong L, Xingyuan L, Chao S, Yunhui Z, Zhengli W et al. Autoinducer-2 Facilitates Pseudomonas aeruginosa PAO1 Pathogenicity in vitro and in vivo. Front Microbiol 2017;8:19–44
    [Google Scholar]
  9. Deng Y, Wu J, Tao F, Zhang LH. Listening to a new language: DSF-based quorum sensing in gram-negative bacteria. Chem Rev 2011;111:160–173 [CrossRef]
    [Google Scholar]
  10. Tiaden A, Spirig T, Hilbi H. Bacterial gene regulation by α-hydroxyketone signaling. Trends Microbiol 2010;18:288–297 [CrossRef]
    [Google Scholar]
  11. Moreira CG, Weinshenker D, Sperandio V. QseC mediates Salmonella enterica serovar typhimurium virulence in vitro and in vivo. Infect Immun 2010;78:914–926 [CrossRef]
    [Google Scholar]
  12. Lee J, Zhang L. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 2015;6:26–41 [CrossRef]
    [Google Scholar]
  13. Dworkin J. The medium is the message: interspecies and interkingdom signaling by peptidoglycan and related bacterial glycans. Annu Rev Microbiol 2014;68:137–154 [CrossRef]
    [Google Scholar]
  14. Winson MK, Camara M, Latifi A, Foglino M, Chhabra SR et al. Multiple N-acyl-L-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 1995;92:9427–9431 [CrossRef]
    [Google Scholar]
  15. Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB et al. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 2003;22:3803–3815 [CrossRef]
    [Google Scholar]
  16. Hansen SK, Rainey PB, Haagensen JAJ, Molin S. Evolution of species interactions in a biofilm community. Nature 2007;445:533–536 [CrossRef]
    [Google Scholar]
  17. Clatworthy AE, Pierson E, Hung DT. Targeting virulence: a new paradigm for antimicrobial therapy. Nat Chem Biol 2007;3:541–548 [CrossRef]
    [Google Scholar]
  18. Njoroge J, Sperandio V. Jamming bacterial communication: new approaches for the treatment of infectious diseases. EMBO Mol Med 2009;1:201–210 [CrossRef]
    [Google Scholar]
  19. Pan J, Ren D. Quorum sensing inhibitors: a patent overview. Expert Opin Ther Pat 2009;19:1581–1601 [CrossRef]
    [Google Scholar]
  20. Maeda T, García-Contreras R, Pu M, Sheng L, Garcia LR et al. Quorum quenching quandary: resistance to antivirulence compounds. ISME J 2012;6:493–501 [CrossRef]
    [Google Scholar]
  21. Defroirdt T, Boon N, Bossier P. Can bacteria evolve resistance to quorum sensing disruption?. PLoS Pathog 2010;6:73–87
    [Google Scholar]
  22. Rendueles O, Kaplan JB, Ghigo JM. Antibiofilm polysaccharides. Environ Microbiol 2013;15:334–346 [CrossRef]
    [Google Scholar]
  23. Chernin L, Toklikishvili N, Ovadis M, Kim S, Ben-Ari J et al. Quorum-sensing quenching by rhizobacterial volatiles. Environ Microbiol Rep 2011;3:698–704 [CrossRef]
    [Google Scholar]
  24. Teasdale ME, Liu J, Wallace J, Akhlaghi F, Rowley DC. Secondary metabolites produced by the marine bacterium Halobacillus salinus that inhibit quorum sensing-controlled phenotypes in gram-negative bacteria. Appl Environ Microbiol 2009;75:567–572 [CrossRef]
    [Google Scholar]
  25. Mansson M, Nielsen A, Kjærulff L, Gotfredsen CH, Wietz M et al. Inhibition of virulence gene expression in Staphylococcus aureus by novel depsipeptides from a marine Photobacterium. Mar Drugs 2011;9:2537–2552 [CrossRef]
    [Google Scholar]
  26. Schlatter DC, Kinkel LL. Do tradeoffs structure antibiotic inhibition, resistance, and resource use among soil-borne Streptomyces?. BMC Evol Biol 2015;15:186 [CrossRef]
    [Google Scholar]
  27. Li J, Wang W, Xu SX, Magarvey NA, McCormick JK. Lactobacillus reuteri-produced cyclic dipeptides quench agr-mediated expression of toxic shock syndrome toxin-1 in staphylococci. Pro Natl Acad Sci USA 2011;108:3360–3365 [CrossRef]
    [Google Scholar]
  28. Wang BY, Alvarez P, Hong J, Kuramitsu HK. Periodontal pathogens interfere with quorum-sensing-dependent virulence properties in Streptococcus mutans. J Periodontal Res 2011;46:105–110 [CrossRef]
    [Google Scholar]
  29. Natrah FMI, Kenmegne MM, Wiyoto W, Sorgeloos P, Bossier P et al. Effects of micro-algae commonly used in aquaculture on acyl-homoserine lactone quorum sensing. Aquaculture 2011;317:53–57 [CrossRef]
    [Google Scholar]
  30. Koh KH, Tham FY. Screening of traditional Chinese medicinal plants for quorum-sensing inhibitors activity. Journal of Microbiology, Immunology and Infection 2011;44:144–148 [CrossRef]
    [Google Scholar]
  31. Teplitski M, Robinson JB, Bauer WD. Plants secrete substances that mimic bacterial N -Acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. MPMI 2000;13:637–648 [CrossRef]
    [Google Scholar]
  32. Bacha K, Tariku Y, Gebreyesus F, Zerihun S, Mohammed A et al. Antimicrobial and anti-Quorum sensing activities of selected medicinal plants of Ethiopia: implication for development of potent antimicrobial agents. BMC Microbiol 2016;16:139 [CrossRef]
    [Google Scholar]
  33. Hentzer M, Rice SA, Givskov M, Høiby N, Parsek MR et al. Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiol 2002;148:87–102 [CrossRef]
    [Google Scholar]
  34. Kumar L, Chhibber S, Harjai K. Structural alterations in Pseudomonas aeruginosa by zingerone contribute to enhanced susceptibility to antibiotics, serum and phagocytes. Life Sci 2014;117:24–32 [CrossRef]
    [Google Scholar]
  35. Song C, Ma H, Zhao Q, Song S, Jia Z. Inhibition of quorum sensing activity by ethanol extract of Scutellaria baicalensis Georgi. J Plant Pathol Microbiol 2012;7:001
    [Google Scholar]
  36. Hussain AI, Anwar F, Hussain Sherazi ST, Przybylski R. Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chem 2008;108:986–995 [CrossRef]
    [Google Scholar]
  37. Ghosh R, Tiwary BK, Kumar A, Chakraborty R. Guava leaf extract inhibits quorum-sensing and Chromobacterium violaceum induced lysis of human hepatoma cells: Whole transcriptome analysis reveals differential gene expression. PLoS One 2014;9:e107703 [CrossRef]
    [Google Scholar]
  38. Chaudhari V, Gosai H, Raval S, Kothari V. Effect of certain natural products and organic solvents on quorum sensing in Chromobacterium violaceum. Asian Pac J Trop Med 2014;7:S204–S211 [CrossRef]
    [Google Scholar]
  39. Jakobsen TH, Bragason SK, Phipps RK, Christensen LD, van Gennip M et al. Food as a source for quorum sensing inhibitors: iberin from horseradish revealed as a quorum sensing inhibitor of Pseudomonas aeruginosa. Appl Environ Microbiol 2012;78:2410–2421 [CrossRef]
    [Google Scholar]
  40. Ravichandiran V, Shanmugam K, Solomon A. Screening of SdiA inhibitors from Melia dubia seeds extracts towards the hold back of uropathogenic E.coli quorum sensing-regulated factors. Med Chem 2013;9:819–827 [CrossRef]
    [Google Scholar]
  41. Krishnan T, Yin WF, Chan KG. Inhibition of quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa PAO1 by ayurveda spice clove (Syzygium aromaticum) bud extract. Sensors 2012;12:4016–4030 [CrossRef]
    [Google Scholar]
  42. Jakobsen TH, van Gennip M, Phipps RK, Shanmugham MS, Christensen LD et al. Ajoene, a sulfur-rich molecule from garlic, inhibits genes controlled by quorum sensing. Antimicrob Agents Chemother 2012;56:2314–2325 [CrossRef]
    [Google Scholar]
  43. Truchado P, Giménez-Bastida JA, Larrosa M, Castro-Ibáñez I, Espín JC et al. Inhibition of quorum sensing (Qs) in Yersinia enterocolitica by an orange extract rich in glycosylated flavanones. J Agric Food Chem 2012;60:8885–8894 [CrossRef]
    [Google Scholar]
  44. Abraham I, Palani A, Ramaswamy BR, Shunmugiah KP, Arumugam VR. Antiquorum sensing and antibiofilm potential of Capparis spinosa. Arch Med Res 2011;2:658–668
    [Google Scholar]
  45. Song Z, Kong KF, Wu H, Maricic N, Ramalingam B et al. Panax ginseng has anti-infective activity against opportunistic pathogen Pseudomonas aeruginosa by inhibiting quorum sensing, a bacterial communication process critical for establishing infection. Phytomedicine 2010;17:1040–1046 [CrossRef]
    [Google Scholar]
  46. Vikram A, Jesudhasan PR, Jayaprakasha GK, Pillai BS, Patil BS. Grapefruit bioactive limonoids modulate E. coli O157:H7 TTSS and biofilm. Int J Food Microbiol 2010;140:109–116 [CrossRef]
    [Google Scholar]
  47. Al-HussainiR MAM. Antimicrobial and antiquorum sensing activity of different partsof Laurus nobilis l. Extracts. Jordan Med. J 2009;43:286–298
    [Google Scholar]
  48. Niu C, Afre S, Gilbert ES. Subinhibitory concentrations of cinnamaldehyde interfere with quorum sensing. Lett Appl Microbiol 2006;43:489–494 [CrossRef]
    [Google Scholar]
  49. Brackman G, Defoirdt T, Miyamoto C, Bossier P, Van Calenbergh S et al. Cinnamaldehyde and cinnamaldehyde derivatives reduce virulence in Vibrio spp. by decreasing the DNA-binding activity of the quorum sensing response regulator LuxR. BMC Microbiol 2008;8:149 [CrossRef]
    [Google Scholar]
  50. Brackman G, Hillaert U, Van Calenbergh S, Nelis HJ, Coenye T. Use of quorum sensing inhibitors to interfere with biofilm formation and development in Burkholderia multivorans and Burkholderia cenocepacia. Res Microbiol 2009;160:144–151 [CrossRef]
    [Google Scholar]
  51. Singh BN, Singh BR, Singh RL, Prakash D, Sarma BK et al. Antioxidant and anti-quorum sensing activities of green pod of Acacia nilotica L. Food Chem Toxicol 2009;47:778–786 [CrossRef]
    [Google Scholar]
  52. Huerta V, Mihalik K, Crixell SH, Vattem DA. Herbs, spices and medicinal plants used in Hispanic traditional medicine can decrease quorum sensing dependent virulence in Pseudomonas aeruginosa. Int J App Res Nat Prod 2008;1:9–15
    [Google Scholar]
  53. Adonizio AL, Downum K, Bennett BC, Mathee K. Anti-quorum sensing activity of medicinal plants in southern Florida. J Ethnopharmacol 2006;105:427–435 [CrossRef]
    [Google Scholar]
  54. Choo JH, Rukayadi Y, Hwang J-K. Inhibition of bacterial quorum sensing by vanilla extract. Lett Appl Microbiol 2006;42:637–641 [CrossRef]
    [Google Scholar]
  55. Ooi LSM, Kam SL, Kam S-L, Wong EY, Wong EYL et al. Antimicrobial activities of cinnamon oil and cinnamaldehyde from the Chinese medicinal herb Cinnamomum Cassia Blume. Am J Chin Med 2006;34:511–522 [CrossRef]
    [Google Scholar]
  56. Rasko DA, Moreira CG, Li DR, Reading NC, Ritchie JM et al. Targeting QseC signaling and virulence for antibiotic development. Science 2008;321:1078–1080 [CrossRef]
    [Google Scholar]
  57. Daniels R, De Vos DE, Desair J, Raedschelders G, Luyten E et al. The CIN quorum sensing locus of Rhizobium etli CNPAF512 affects growth and symbiotic nitrogen fixation. J Biol Chem 2002;277:462–468 [CrossRef]
    [Google Scholar]
  58. Scazzocchio F, Cometa MF, Tomassini L, Palmery M. Antibacterial activity of Hydrastis canadensis extract and its major isolated alkaloids. Planta Med 2001;67:561–564 [CrossRef]
    [Google Scholar]
  59. Carcamo G, Silva M, Becerra J, Urrutia H, SOSSA K et al. Inhibition of quorum sensing by drimane lactones from Chilean flora. J Chil Chem Soc 2014;59:2622–2624 [CrossRef]
    [Google Scholar]
  60. Ganin H, Rayo J, Amara N, Levy N, Krief P et al. Sulforaphane and erucin, natural isothiocyanates from broccoli, inhibit bacterial quorum sensing. Med Chem Commun 2013;4:175–179 [CrossRef]
    [Google Scholar]
  61. Wu D, Huang W, Duan Q, Li F, Cheng H. Sodium houttuyfonate affects production of N-acyl homoserine lactone and quorum sensing-regulated genes expression in Pseudomonas aeruginosa. Front Microbiol 2014;5:635 [CrossRef]
    [Google Scholar]
  62. Kumar S, Engelberg-Kulka H. Quorum sensing peptides mediating interspecies bacterial cell death as a novel class of antimicrobial agents. Curr Opin Microbiol 2014;21:22–27 [CrossRef]
    [Google Scholar]
  63. de Nys R, Wright AD, König GM, Sticher O. New halogenated furanones from the marine alga delisea pulchra (CF. fimbriata). Tetrahedron 1993;49:11213–11220 [CrossRef]
    [Google Scholar]
  64. De Nys R, Steinberg PD, Willemsen P, Dworjanyn SA, Gabelish CL et al. Broad spectrum effects of secondary metabolites from the red alga delisea pulchra in antifouling assays. Biofouling 1995;8:259–271 [CrossRef]
    [Google Scholar]
  65. Manefield M, Welch M, Givskov M, Salmond GP, Kjelleberg S. Halogenated furanones from the red alga, Delisea pulchra, inhibit carbapenem antibiotic synthesis and exoenzyme virulence factor production in the phytopathogen Erwinia carotovora. FEMS Microbiol Lett 2001;205:131–138 [CrossRef]
    [Google Scholar]
  66. Manefield M, Steinberg P, Rasmussen TB, Henzter M, Kjelleberg S et al. Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiol 2002;148:1119–1127 [CrossRef]
    [Google Scholar]
  67. Zhu P, Peng H, Ni N, Wang B, Li M. Novel AI-2 quorum sensing inhibitors in Vibrio harveyi identified through structure-based virtual screening. Bioorg Med Chem Lett 2012;22:6413–6417 [CrossRef]
    [Google Scholar]
  68. Yates EA, Philipp B, Buckley C, Atkinson S, Chhabra SR et al. N-acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect Immun 2002;70:5635–5646 [CrossRef]
    [Google Scholar]
  69. Byers JT, Lucas C, Salmond GPC, Welch M. Nonenzymatic turnover of an Erwinia carotovora quorum-sensing signaling molecule. J Bacteriol 2002;184:1163–1171 [CrossRef]
    [Google Scholar]
  70. Borchardt SA, Allain EJ, Michels JJ, Stearns GW, Kelly RF et al. Reaction of acylated homoserine lactone bacterial signaling molecules with oxidized halogen antimicrobials. Appl Environ Microbiol 2001;67:3174–3179 [CrossRef]
    [Google Scholar]
  71. Park J, Kaufmann GF, Bowen JP, Arbiser JL, Janda KD. Solenopsin a, a venom alkaloid from the fire ant Solenopsis invicta, inhibits quorum-sensing signaling in Pseudomonas aeruginosa. J Infect Dis 2008;198:1198–1201 [CrossRef]
    [Google Scholar]
  72. Skindersoe ME, Ettinger-Epstein P, Rasmussen TB, Bjarnsholt T, de Nys R et al. Quorum sensing antagonism from marine organisms. Mar Biotechnol 2008;10:56–63 [CrossRef]
    [Google Scholar]
  73. Tello E, Castellanos L, Arevalo-Ferro C, Rodríguez J, Jiménez C et al. Absolute stereochemistry of antifouling cembranoid epimers at C-8 from the Caribbean octocoral Pseudoplexaura flagellosa. Revised structures of plexaurolones. Tetrahedron 2011;67:9112–9121 [CrossRef]
    [Google Scholar]
  74. Dong YH, Xu JL, Li XZ, Zhang LH. AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proceedings of the National Academy of Sciences 2000;97:3526–3531 [CrossRef]
    [Google Scholar]
  75. Dong YH, Gusti AR, Zhang Q, JL X, Zhang LH. Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Appl Environ Microbiol 1754;68:2002–1759
    [Google Scholar]
  76. Zhang RG, Pappas KM, Pappas T, Brace JL, Miller PC et al. Structure of a bacterial quorum-sensing transcription factor complexed with pheromone and DNA. Nature 2002;417:971–974 [CrossRef]
    [Google Scholar]
  77. Lee JE, Singh V, Evans GB, Tyler PC, Furneaux RH et al. Structural rationale for the affinity of pico- and femtomolar transition state analogues of Escherichia coli 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase. J Biol Chem 2005;280:18274–18282 [CrossRef]
    [Google Scholar]
  78. Ban H, Chai X, Lin Y, Zhou Y, Peng D et al. Transgenic Amorphophallus konjac expressing synthesized acyl-homoserine lactonase (aiiA) gene exhibit enhanced resistance to soft rot disease. Plant Cell Rep 2009;28:1847–1855 [CrossRef]
    [Google Scholar]
  79. Chan KG, Yin WF, Hong KW. Recent Advances in Bacterial Quorum Quenching, in StrEss and Environmental Regulation of Gene Expression and Adaptation in Bacteria Hoboken, NJ, USA: John Wiley & Sons, Inc; 2016
    [Google Scholar]
  80. Ulrich RL. Quorum quenching: enzymatic disruption of N-acylhomoserine lactone-mediated bacterial communication in Burkholderia thailandensis. Appl Environ Microbiol 2004;70:6173–6180 [CrossRef]
    [Google Scholar]
  81. Fitriyah D, Wahyudi AT, Rusmana I. Characterization of bacteria producing acyl HomoserineLactone (AHL) lactonase from agricultural Lands. Adv Environ Biol 2015;9:140–148
    [Google Scholar]
  82. Carlier A, Uroz S, Smadja B, Fray R, Latour X et al. The Ti plasmid of Agrobacterium tumefaciens harbors an attM-paralogous gene, aiiB, also encoding N-Acyl homoserine lactonase activity. Appl Environ Microbiol 2003;69:4989–4993 [CrossRef]
    [Google Scholar]
  83. Uroz S, Oger P, Chhabra SR, Cámara M, Williams P et al. N-Acyl homoserine lactones are degraded via an amidolytic activity in Comamonas sp. strain D1. Arch Microbiol 2007;187:249–256 [CrossRef]
    [Google Scholar]
  84. Park SY, Lee SJ, Oh TK, Oh JW, Koo BT et al. AhlD, an N-acylhomoserine lactonase in Arthrobacter sp., and predicted homologues in other bacteria. Microbiology 2003;149:1541–1550 [CrossRef]
    [Google Scholar]
  85. Riaz K, Elmerich C, Moreira D, Raffoux A, Dessaux Y et al. A metagenomic analysis of soil bacteria extends the diversity of quorum-quenching lactonases. Environ Microbiol 2008;10:560–570 [CrossRef]
    [Google Scholar]
  86. Reuter K, Steinbach A, Helms V. Interfering with bacterial quorum sensing. Perspect Medicin Chem 2016;8:PMC.S13209–.13215 [CrossRef]
    [Google Scholar]
  87. Mei GY, Yan XX, Turak A, Luo ZQ, Zhang LQ. AidH, an alpha/beta-hydrolase fold family member from an Ochrobactrum sp. strain, is a novel N-acylhomoserine lactonase. Appl Environ Microbiol 2010;76:4933–4942 [CrossRef]
    [Google Scholar]
  88. Krysciak D, Schmeisser C, Preuss S, Riethausen J, Quitschau M et al. Involvement of multiple loci in quorum quenching of autoinducer I molecules in the nitrogen-fixing symbiont Rhizobium (Sinorhizobium) sp. strain NGR234. Appl Environ Microbiol 2011;77:5089–5099 [CrossRef]
    [Google Scholar]
  89. Morohoshi T, Tominaga Y, Someya N, Ikeda T. Complete genome sequence and characterization of the N-acylhomoserine lactone-degrading gene of the potato leaf-associated Solibacillus silvestris. J Biosci Bioeng 2012;113:20–25 [CrossRef]
    [Google Scholar]
  90. Elias M, Dupuy J, Merone L, Mandrich L, Porzio E et al. Structural basis for natural lactonase and promiscuous phosphotriesterase activities. J Mol Biol 2008;379:1017–1028 [CrossRef]
    [Google Scholar]
  91. Merone L, Mandrich L, Porzio E, Rossi M, Müller S et al. Improving the promiscuous nerve agent hydrolase activity of a thermostable archaeal lactonase. Bioresour Technol 2010;101:9204–9212 [CrossRef]
    [Google Scholar]
  92. Park SY, Hwang BJ, Shin MH, Kim JA, Kim HK et al. N-acylhomoserine lactonase producing Rhodococcus spp. with different AHL-degrading activities. FEMS Microbiol Lett 2006;261:102–108 [CrossRef]
    [Google Scholar]
  93. Chow JY, Xue B, Lee KH, Tung A, Wu L et al. Directed evolution of a thermostable quorum-quenching lactonase from the amidohydrolase superfamily. J Biol Chem 2010;285:40911–40920 [CrossRef]
    [Google Scholar]
  94. Afriat L, Roodveldt C, Manco G, Tawfik DS. The latent promiscuity of newly identified microbial lactonases is linked to a recently diverged phosphotriesterase. Biochemistry 2006;45:13677–13686 [CrossRef]
    [Google Scholar]
  95. Chow JY, Wu L, Yew WS. Directed evolution of a quorum-quenching lactonase from Mycobacterium avium subsp. paratuberculosis K-10 in the amidohydrolase superfamily. Biochemistry 2009;48:4344–4353 [CrossRef]
    [Google Scholar]
  96. Schipper C, Hornung C, Bijtenhoorn P, Quitschau M, Grond S et al. Metagenome-derived clones encoding two novel lactonase family proteins involved in biofilm inhibition in Pseudomonas aeruginosa. Appl Environ Microbiol 2009;75:224–233 [CrossRef]
    [Google Scholar]
  97. Bijtenhoorn P, Mayerhofer H, Müller-Dieckmann J, Utpatel C, Schipper C et al. A novel metagenomic short-chain dehydrogenase/reductase attenuates Pseudomonas aeruginosa biofilm formation and virulence on Caenorhabditis elegans. PLoS One 2011;6:e26278 [CrossRef]
    [Google Scholar]
  98. Seo MJ, Lee BS, Pyun YR, Park H. Isolation and characterization of N-acylhomoserine lactonase from the thermophilic bacterium, Geobacillus caldoxylosilyticus YS-8. Biosci Biotechnol Biochem 2011;75:1789–1795 [CrossRef]
    [Google Scholar]
  99. Sunder AV, Utari PD, Ramasamy S, van Merkerk R, Quax W et al. Penicillin V acylases from gram-negative bacteria degrade N-acylhomoserine lactones and attenuate virulence in Pseudomonas aeruginosa. Appl Microbiol Biotechnol 2017;101:2383–2395 [CrossRef]
    [Google Scholar]
  100. Gamby S, Roy V, Guo M, Smith JAI, Wang J et al. Altering the communication networks of multispecies microbial systems using a diverse toolbox of AI-2 analogues. ACS Chem Biol 2012;7:1023–1030 [CrossRef]
    [Google Scholar]
  101. Mukherji R, Varshney NK, Panigrahi P, Suresh CG, Prabhune A. A new role for penicillin acylases: degradation of acyl homoserine lactone quorum sensing signals by Kluyvera citrophila penicillin G acylase. Enzyme Microb Technol 2014;56:1–7 [CrossRef]
    [Google Scholar]
  102. Zaborina O, Lepine F, Xiao G, Valuckaite V, Chen Y et al. Dynorphin activates quorum sensing quinolone signaling in Pseudomonas aeruginosa. PLoS Pathog 2007;3:e35 [CrossRef]
    [Google Scholar]
  103. Morohoshi T, Nakazawa S, Ebata A, Kato N, Ikeda T. Identification and characterization of N-acylhomoserine lactone-acylase from the fish intestinal Shewanella sp. strain MIB015. Biosci Biotechnol Biochem 2008;72:1887–1893 [CrossRef]
    [Google Scholar]
  104. Lin YH, Xu JL, Hu J, Wang LH, Ong SL et al. Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol Microbiol 2003;47:849–860 [CrossRef]
    [Google Scholar]
  105. Huang JJ, Han JI, Zhang LH, Leadbetter JR. Utilization of acyl-homoserine lactone quorum signals for growth by a soil pseudomonad and Pseudomonas aeruginosa PAO1. Appl Environ Microbiol 2003;69:5941–5949 [CrossRef]
    [Google Scholar]
  106. Sio CF, Otten LG, Cool RH, Diggle SP, Braun PG et al. Quorum quenching by an N-acyl-homoserine lactone acylase from Pseudomonas aeruginosa PAO1. Infect Immun 2006;74:1673–1682 [CrossRef]
    [Google Scholar]
  107. Huang JJ, Petersen A, Whiteley M, Leadbetter JR. Identification of QuiP, the product of gene PA1032, as the second acyl-homoserine lactone acylase of Pseudomonas aeruginosa PAO1. Appl Environ Microbiol 2006;72:1190–1197 [CrossRef]
    [Google Scholar]
  108. Gopu V, Meena CK, Shetty PH, Venkadesaperumal G, Chetan KM. Quercetin influences quorum sensing in food borne bacteria: in-vitro and in-silico evidence. PLoS One 2015;10:e0134684 [CrossRef]
    [Google Scholar]
  109. Stevens AM, Queneau Y, Soulère L, von Bodman S, Doutheau A. Mechanisms and synthetic modulators of AHL-dependent gene regulation. Chem Rev 2011;111:4–27 [CrossRef]
    [Google Scholar]
  110. Romero M, Diggle SP, Heeb S, Cámara M, Otero A. Quorum quenching activity in Anabaena sp. PCC 7120: identification of AiiC, a novel AHL-acylase. FEMS Microbiol Lett 2008;280:73–80 [CrossRef]
    [Google Scholar]
  111. Park SY, Kang HO, Jang HS, Lee JK, Koo BT et al. Identification of extracellular N-acylhomoserine lactone acylase from a Streptomyces sp. and its application to quorum quenching. Appl Environ Microbiol 2005;71:2632–2641 [CrossRef]
    [Google Scholar]
  112. Choi H, Mascuch SJ, Villa FA, Byrum T, Teasdale ME et al. Honaucins A-C, potent inhibitors of inflammation and bacterial quorum sensing: synthetic derivatives and structure-activity relationships. Chem Biol 2012;19:589–598 [CrossRef]
    [Google Scholar]
  113. Marco ML, Legac J, Lindow SE. Pseudomonas syringae genes induced during colonization of leaf surfaces. Environ Microbiol 2005;7:1379–1391 [CrossRef]
    [Google Scholar]
  114. Shepherd RW, Lindow SE. Two dissimilar N-acyl-homoserine lactone acylases of Pseudomonas syringae influence colony and biofilm morphology. Appl Environ Microbiol 2009;75:45–53 [CrossRef]
    [Google Scholar]
  115. Uroz S, Chhabra SR, Cámara M, Williams P, Oger P et al. N-acylhomoserine lactone quorum-sensing molecules are modified and degraded by Rhodococcus erythropolis W2 by both amidolytic and novel oxidoreductase activities. Microbiology 2005;151:3313–3322 [CrossRef]
    [Google Scholar]
  116. Leadbetter JR, Greenberg EP. Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus. J Bacteriol 2000;182:6921–6926 [CrossRef]
    [Google Scholar]
  117. Uroz S, Oger PM, Chapelle E, Adeline MT, Faure D et al. A Rhodococcus qsdA-encoded enzyme defines a novel class of large-spectrum quorum-quenching lactonases. Appl Environ Microbiol 2008;74:1357–1366 [CrossRef]
    [Google Scholar]
  118. Maisuria VB, Nerurkar AS. Interference of Quorum Sensing by Delftia sp. VM4 Depends on the Activity of a Novel N-Acylhomoserine Lactone-Acylase. PLoS One 2015;10:e0138034 [CrossRef]
    [Google Scholar]
  119. Chen CN, Chen CJ, Liao CT, Lee CY. A probable aculeacin a acylase from the Ralstonia solanacearum GMI1000 is N-acyl-homoserine lactone acylase with quorum-quenching activity. BMC Microbiol 2009;9:89 [CrossRef]
    [Google Scholar]
  120. Aldridge WN. Serum esterases. II. An enzyme hydrolysing diethyl p-nitrophenyl phosphate (E600) and its identity with the A-esterase of mammalian sera. Biochem J 1953;53:117–124 [CrossRef]
    [Google Scholar]
  121. Stoltz DA, Ozer EA, Ng CJ, Yu JM, Reddy ST et al. Paraoxonase-2 deficiency enhances Pseudomonas aeruginosa quorum sensing in murine tracheal epithelia. Am J Physiol Lung Cell Mol Physiol 2007;292:L852–L860 [CrossRef]
    [Google Scholar]
  122. Bokhove M, Nadal Jimenez P, Quax WJ, Dijkstra BW. The quorum-quenching N-Acyl homoserine lactone acylase PvdQ is an Ntn-hydrolase with an unusual substrate-binding pocket. Proc Natl Acad Sci U S A 2010;107:686–691 [CrossRef]
    [Google Scholar]
  123. Bijtenhoorn P, Schipper C, Hornung C, Quitschau M, Grond S et al. BpiB05, a novel metagenome-derived hydrolase acting on N-acylhomoserine lactones. J Biotechnol 2011;155:86–94 [CrossRef]
    [Google Scholar]
  124. Cardini F, Wade C, Regalia AL, Gui S, Li W et al. Clinical research in traditional medicine: priorities and methods. Complement Ther Med 2006;14:282–287 [CrossRef]
    [Google Scholar]
  125. Chiappelli F, Prolo P, Rosenblum M, Edgerton M, Cajulis OS. Evidence-based research in complementary and alternative medicine II: the process of evidence-based research. Evid Based Complement Alternat Med 2006;3:3–12 [CrossRef]
    [Google Scholar]
  126. Firenzuoli F, Gori L. Herbal medicine today: clinical and research issues. Evid Based Complement Alternat Med 2007;4:37–40 [CrossRef]
    [Google Scholar]
  127. Lade H, Paul D, Kweon JH. Quorum quenching mediated approaches for control of membrane biofouling. Int J Biol Sci 2014;10:550–565 [CrossRef]
    [Google Scholar]
  128. Desouky SE, Shojima A, Singh RP, Matsufuji T, Igarashi Y et al. Cyclodepsipeptides produced by actinomycetes inhibit cyclic-peptide-mediated quorum sensing in Gram-positive bacteria. FEMS Microbiol Lett 2015;362:fnv109–9 [CrossRef]
    [Google Scholar]
  129. Miller KP, Wang L, Chen YP, Pellechia PJ, Benicewicz BC et al. Engineering nanoparticles to silence bacterial communication. Front Microbiol 2015;6:189 [CrossRef]
    [Google Scholar]
  130. Parsek MR, Val DL, Hanzelka BL, Cronan JE, Greenberg EP. Acyl homoserine-lactone quorum-sensing signal generation. Proc Natl Acad Sci USA 1999;96:4360–4365 [CrossRef]
    [Google Scholar]
  131. Chunli Y, Tao Z, Xin C. Biosynthesis of S-Adenosylmethionine by magnetically immobilized Escherichia coli cells highly expressing a methionine adenosyltransferase variant. Molecules 2017;22:1365 [CrossRef]
    [Google Scholar]
  132. Schweizer HP. Efflux as a mechanism of resistance to antimicrobials in Pseudomonas aeruginosa and related bacteria: unanswered questions. Genet Mol Res 2003;2:48–62
    [Google Scholar]
  133. Hoang TT, Schweizer HP. Characterization of Pseudomonas aeruginosa enoyl-acyl carrier protein reductase (FabI): a target for the antimicrobial triclosan and its role in acylated homoserine lactone synthesis. J Bacteriol 1999;181:5489–5497
    [Google Scholar]
  134. Smith KM, Bu Y, Suga H. Library screening for synthetic agonists and antagonists of a Pseudomonas aeruginosa autoinducer. Chem Biol 2003;10:563–571 [CrossRef]
    [Google Scholar]
  135. Chung J, Goo E, Yu S, Choi O, Lee J et al. Small-molecule inhibitor binding to an N-acyl-homoserine lactone synthase. Proceedings of the National Academy of Sciences 2011;108:12089–12094 [CrossRef]
    [Google Scholar]
  136. Schauder S, Shokat K, Surette MG, Bassler BL. The luxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol Microbiol 2001;41:463–476 [CrossRef]
    [Google Scholar]
  137. Chen X, Schauder S, Potier N, Van Dorsselaer A, Pelczer I et al. Structural identification of a bacterial quorum-sensing signal containing boron. Nature 2002;415:545–549 [CrossRef]
    [Google Scholar]
  138. Malladi VLA, Sobczak AJ, Maricic N, Murugapiran SK, Schneper L et al. Substituted lactam and cyclic azahemiacetals modulate Pseudomonas aeruginosa quorum sensing. Bioorg Med Chem 2011;19:5500–5506 [CrossRef]
    [Google Scholar]
  139. Han X, Lu C. Biological activity and identification of a peptide inhibitor of LuxS from Streptococcus suis serotype 2. FEMS Microbiol Lett 2009;294:16–23 [CrossRef]
    [Google Scholar]
  140. Zang T, Lee BWK, Cannon LM, Ritter KA, Dai S et al. A naturally occurring brominated furanone covalently modifies and inactivates LuxS. Bioorg Med Chem Lett 2009;19:6200–6204 [CrossRef]
    [Google Scholar]
  141. Singh V, Evans GB, Lenz DH, Mason JM, Clinch K et al. Femtomolar transition state analogue inhibitors of 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase from Escherichia coli. J Biol Chem 2005;280:18265–18273 [CrossRef]
    [Google Scholar]
  142. MY L, NT N, Chou HT, CD L, Tai PC et al. Structure based discovery and experimental verification of novel Al-2 quorum sensing inhibitors against Vibrio harveyi. Chemmed chem 2008;3:1242–1249
    [Google Scholar]
  143. Calfee MW, Coleman JP, Pesci EC. Interference with Pseudomonas quinolone signal synthesis inhibits virulence factor expression by Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2001;98:11633–11637 [CrossRef]
    [Google Scholar]
  144. Lesic B, Lépine F, Déziel E, Zhang J, Zhang Q et al. Inhibitors of pathogen intercellular signals as selective anti-infective compounds. PLoS Pathog 2007;3:e126–1239 [CrossRef]
    [Google Scholar]
  145. Cugini C, Calfee MW, Farrow JM, III, Morales DK, Pesci EC et al. Farnesol, a common sesquiterpene, inhibits PQS production in Pseudomonas aeruginosa. Mol Microbiol 2007;65:896–906 [CrossRef]
    [Google Scholar]
  146. Kulanthaivel P, Kreuzman AJ, Strege MA, Belvo MD, Smitka TA et al. Novel lipoglycopeptides as inhibitors of bacterial signal peptidase I. J Biol Chem 2004;279:36250–36258 [CrossRef]
    [Google Scholar]
  147. Nakayama J, Uemura Y, Nishiguchi K, Yoshimura N, Igarashi Y et al. Ambuic acid inhibits the biosynthesis of cyclic peptide quormones in gram-positive bacteria. Antimicrob Agents Chemother 2009;53:580–586 [CrossRef]
    [Google Scholar]
  148. Kavanaugh JS, Thoendel M, Horswill AR. A role for type I signal peptidase in Staphylococcus aureus quorum sensing. Mol Microbiol 2007;65:780–798 [CrossRef]
    [Google Scholar]
  149. Schaefer AL, Hanzelka BL, Eberhard A, Greenberg EP. Quorum sensing in Vibrio fischeri: probing autoinducer-LuxR interactions with autoinducer analogs. J Bacteriol 1996;178:2897–2901 [CrossRef]
    [Google Scholar]
  150. Zhu J, Winans SC. Activity of the quorum-sensing regulator TraR of Agrobacterium tumefaciens is inhibited by a truncated, dominant defective TraR-like protein. Mol Microbiol 1998;27:289–297 [CrossRef]
    [Google Scholar]
  151. Castang S, Chantegrel B, Deshayes C, Dolmazon R, Gouet P et al. N-sulfonyl homoserine lactones as antagonists of bacterial quorum sensing. Bioorg Med Chem Lett 2004;14:5145–5149 [CrossRef]
    [Google Scholar]
  152. Persson T, Hansen TH, Rasmussen TB, Skindersø ME, Givskov M et al. Rational design and synthesis of new quorum-sensing inhibitors derived from acylated homoserine lactones and natural products from garlic. Org Biomol Chem 2005;3:253–262 [CrossRef]
    [Google Scholar]
  153. Smith RS, Iglewski BH. Pseudomonas aeruginosa quorum sensing as a potential antimicrobial target. J Clin Invest 2003;112:1460–1465 [CrossRef]
    [Google Scholar]
  154. Rasmussen TB, Bjarnsholt T, Skindersoe ME, Hentzer M, Kristoffersen P et al. Screening for quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector. J Bacteriol 2005;187:1799–1814 [CrossRef]
    [Google Scholar]
  155. McInnis CE, Blackwell HE. Thiolactone modulators of quorum sensing revealed through library design and screening. Bioorg Med Chem 2011;19:4820–4828 [CrossRef]
    [Google Scholar]
  156. El-Mowafy SA, Abd El Galil KH, Habib E-SE, Shaaban MI. Quorum sensing inhibitory activity of sub-inhibitory concentrations of β-lactams. Afr Health Sci 2017;17:199 [CrossRef]
    [Google Scholar]
  157. Frezza M, Castang S, Estephane J, Soulère L, Deshayes C et al. Synthesis and biological evaluation of homoserine lactone derived ureas as antagonists of bacterial quorum sensing. Bioorg Med Chem 2006;14:4781–4791 [CrossRef]
    [Google Scholar]
  158. Amara N, Mashiach R, Amar D, Krief P, Spieser SAH et al. Covalent inhibition of bacterial quorum sensing. J Am Chem Soc 2009;131:10610–10619 [CrossRef]
    [Google Scholar]
  159. Morohoshi T, Shiono T, Takidouchi K, Kato M, Kato N et al. Inhibition of quorum sensing in Serratia marcescens AS-1 by synthetic analogs of N-acylhomoserine lactone. Appl Environ Microbiol 2007;73:6339–6344 [CrossRef]
    [Google Scholar]
  160. Swem LR, Swem DL, O'Loughlin CT, Gatmaitan R, Zhao B et al. A quorum-sensing antagonist targets both membrane-bound and cytoplasmic receptors and controls bacterial pathogenicity. Mol Cell 2009;35:143–153 [CrossRef]
    [Google Scholar]
  161. Chen G, Swem LR, Swem DL, Stauff DL, O'Loughlin CT et al. A strategy for antagonizing quorum sensing. Mol Cell 2011;42:199–209 [CrossRef]
    [Google Scholar]
  162. Ni N, Choudhary G, Li M, Wang B. Pyrogallol and its analogs can antagonize bacterial quorum sensing in Vibrio harveyi. Bioorg Med Chem Lett 2008;18:1567–1572 [CrossRef]
    [Google Scholar]
  163. Smith JAI, Wang J, Nguyen-Mau SM, Lee V, Sintim HO. Biological screening of a diverse set of AI-2 analogues in Vibrio harveyi suggests that receptors which are involved in synergistic agonism of AI-2 and analogues are promiscuous. Chem Commun 2009;176:7033–7035 [CrossRef]
    [Google Scholar]
  164. Ganin H, Tang X, Meijler MM. Inhibition of Pseudomonas aeruginosa quorum sensing by AI-2 analogs. Bioorg Med Chem Lett 2009;19:3941–3944 [CrossRef]
    [Google Scholar]
  165. Guo M, Gamby S, Nakayama S, Smith J, Sintim HO. A pro-drug approach for selective modulation of AI-2-mediated bacterial cell-to-cell communication. Sensors 2012;12:3762–3772 [CrossRef]
    [Google Scholar]
  166. Ryu EJ, Sim J, Sim J, Lee J, Choi BK. D-galactose as an autoinducer 2 inhibitor to control the biofilm formation of periodontopathogens. J Microbiol 2016;54:632–637 [CrossRef]
    [Google Scholar]
  167. Ji G, Beavis R, Novick RP. Bacterial interference caused by autoinducing peptide variants. Science 1997;276:2027–2030 [CrossRef]
    [Google Scholar]
  168. Lyon GJ, Wright JS, Muir TW, Novick RP. Mol Microbiol. Biochemistry 2002;41:10095–10104 [CrossRef]
    [Google Scholar]
  169. Geisinger E, Muir TW, Novick RP. agr receptor mutants reveal distinct modes of inhibition by staphylococcal autoinducing peptides. Proc Natl Acad Sci U S A 2009;106:1216–1221 [CrossRef]
    [Google Scholar]
  170. Lyon GJ, Mayville P, Muir TW, Novick RP. Rational design of a global inhibitor of the virulence response in Staphylococcus aureus, based in part on localization of the site of inhibition to the receptor-histidine kinase, AgrC. Proc Natl Acad Sci U S A 2000;97:13330–13335 [CrossRef]
    [Google Scholar]
  171. Anguige K, King JR, Ward JP. A multi-phase mathematical model of quorum sensing in a maturing Pseudomonas aeruginosa biofilm. Math Biosci 2006;203:240–276 [CrossRef]
    [Google Scholar]
  172. Bjarnsholt T, Jensen PO, Rasmussen TB, Christophersen L, Calum H et al. Garlic blocks quorum sensing and promotes rapid clearing of pulmonary Pseudomonas aeruginosa infections. Microbiology 2005;151:3873–3880 [CrossRef]
    [Google Scholar]
  173. Defoirdt T, Miyamoto CM, Wood TK, Meighen EA, Sorgeloos P et al. The natural furanone (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone disrupts quorum sensing-regulated gene expression in Vibrio harveyi by decreasing the DNA-binding activity of the transcriptional regulator protein luxR. Environ Microbiol 2007;9:2486–2495 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000826
Loading
/content/journal/micro/10.1099/mic.0.000826
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error