1887

Abstract

Diphtheria toxin is one of the best investigated bacterial toxins and the major virulence factor of toxigenic and strains. However, also diphtheria toxin-free strains of these two species can cause severe infections in animals and humans, indicating the presence of additional virulence factors. In this study, we present a first characterization of two proteins with cytotoxic effect in corynebacteria. A putative ribosome-binding protein (AEG80717, CULC809_00177), first annotated in a genome sequencing project of strain 809, was investigated in detail together with a homologous protein identified in strain HC04 (AEX80148, CDHC04_0155) in this study. The corresponding proteins show striking structural similarity to Shiga-like toxins. Interaction of wild-type, mutant and complementation as well as overexpression strains with invertebrate model systems and cell lines were investigated. Depending on the presence of the corresponding genes, detrimental effects were observed in two invertebrate model systems, and , and on various animal and human epithelial and macrophage cell lines . Taken together, our results support the idea that pathogenicity of corynebacteria is a multifactorial process and that new virulence factors may influence the outcome of potentially fatal corynebacterial infections.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000820
2019-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/165/8/876.html?itemId=/content/journal/micro/10.1099/mic.0.000820&mimeType=html&fmt=ahah

References

  1. Burkovski A. Diphtheria. In Rosenberg E, DeLong EF, Thompson F, Lory S et al. (editors) The Prokaryotes 5, 4th ed. New York: Springer; 2013 pp 237–246
    [Google Scholar]
  2. Loeffler F. Untersuchungen über die bedeutung der mikroorganismen für die entstehung der diphtherie beim menschen, bei der taube und beim kalbe. Mitteilung Klinische Gesundheit Berlin 1884; 2:451–499
    [Google Scholar]
  3. Roux E, Yersin A. Contribution l’étude de la diphtérie. Ann Inst Pasteur 1888; 2:629–661
    [Google Scholar]
  4. Rappuoli R, Malito E. History of diphtheria vaccine development. In Burkovski A. editor Corynebacterium diphtheriae and Related Toxigenic Species Dordrecht: Springer; 2014 pp 225–238
    [Google Scholar]
  5. Burkovski A. Pathogenesis of Corynebacterium diphtheriae and Corynebacterium ulcerans . In Singh SK. editor Human Emerging and Re-emerging Infections: Viral and Parasitic Infections Wiley Blackwell Press: John Wiley & Sons; 2015 pp 699–709
    [Google Scholar]
  6. World Health Organization Immunization, vavvines and biologicals. diphtheria.. http://www.who.int/immunization/monitoring_surveillance/burden/diphtheria/en/ 30th September 2018
  7. Hessling M, Feiertag J, Hoenes K. Pathogens provoking most deaths worldwide: a review. Biosci Biotech Res Comm 2017; 10:1–7
    [Google Scholar]
  8. Sangal V, Hoskisson PA. Corynephages: infections of the infectors. In Burkovski A. editor Corynebacterium diphtheriae and Related Toxigenic Species Dordrecht: Springer; 2014 pp 67–81
    [Google Scholar]
  9. Riegel P, Ruimy R, de Briel D, Prévost G, Jehl F et al. Taxonomy of Corynebacterium diphtheriae and related taxa, with recognition of Corynebacterium ulcerans sp. nov. nom. rev. FEMS Microbiol Lett 1995; 126:271–276 [View Article]
    [Google Scholar]
  10. Burkovski A. Diphtheria and its etiological agents. In Burkovski A. editor Corynebacterium Diphtheriae And Related Toxigenic Species Dordrecht: Springer; 2014 pp 1–14
    [Google Scholar]
  11. Meinel DM, Margos G, Konrad R, Krebs S, Blum H et al. Next generation sequencing analysis of nine Corynebacterium ulcerans isolates reveals zoonotic transmission and a novel putative diphtheria toxin-encoding pathogenicity island. Genome Med 2014; 6:113 [View Article]
    [Google Scholar]
  12. Sing A, Hogardt M, Bierschenk S, Heesemann J. Detection of differences in the nucleotide and amino acid sequences of diphtheria toxin from Corynebacterium diphtheriae and Corynebacterium ulcerans causing extrapharyngeal infections. J Clin Microbiol 2003; 41:4848–4851 [View Article]
    [Google Scholar]
  13. Sing A, Bierschenk S, Heesemann J. Classical diphtheria caused by Corynebacterium ulcerans in Germany: amino acid sequence differences between diphtheria toxins from Corynebacterium diphtheriae and C. ulcerans . Clin Infect Dis 2005; 40:325–326 [View Article]
    [Google Scholar]
  14. Mattos-Guaraldi AL, Sampaio JLM, Santos CS, Pimenta FP, Pereira GA et al. First detection of Corynebacterium ulcerans producing a diphtheria-like toxin in a case of human with pulmonary infection in the Rio de Janeiro metropolitan area, Brazil. Mem Inst Oswaldo Cruz 2008; 103:396–400 [View Article]
    [Google Scholar]
  15. Dias AA, Silva FC Jr, Pereira GA, Souza MC, Camello TCF et al. Corynebacterium ulcerans isolated from an asymptomatic dog kept in an animal shelter in the metropolitan area of Rio de Janeiro, Brazil. Vector Borne Zoonotic Dis 2010; 10:743–748 [View Article]
    [Google Scholar]
  16. Trost E, Al-Dilaimi A, Papavasiliou P, Schneider J, Viehoever P et al. Comparative analysis of two complete Corynebacterium ulcerans genomes and detection of candidate virulence factors. BMC Genomics 2011; 12:383 [View Article]
    [Google Scholar]
  17. Endo Y, Tsurugi K, Yutsudo T, Takeda Y, Ogasawara T et al. Site of action of a Vero toxin (VT2) from Escherichia coli O157:H7 and of Shiga toxin on eukaryotic ribosomes. RNA N-glycosidase activity of the toxins. Eur J Biochem 1988; 171:45–50 [View Article]
    [Google Scholar]
  18. Lingwood CA. Verotoxins and their glycolipid receptors. Adv Lipid Res 1993; 25:189–211
    [Google Scholar]
  19. Sandvig K, van Deurs B. Endocytosis and intracellular sorting of ricin and Shiga toxin. FEBS Lett 1994; 346:99–102 [View Article]
    [Google Scholar]
  20. Hirata R Jr, Pereira GA, Filardy AA, Gomes DLR, Damasco PV et al. Potential pathogenic role of aggregative-adhering Corynebacterium diphtheriae of different clonal groups in endocarditis. Braz J Med Biol Res 2008; 41:986–991 [View Article]
    [Google Scholar]
  21. Trost E, Blom J, Soares Sde C, Huang IH, Al-Dilaimi A et al. Pangenomic study of Corynebacterium diphtheriae that provides insights into the genomic diversity of pathogenic isolates from cases of classical diphtheria, endocarditis, and pneumonia. J Bacteriol 2012; 194:3199–3215 [View Article]
    [Google Scholar]
  22. Abe S, Takayama K, Kinoshita S. Taxonomical studies on glutamic acid-producing bacteria. J Gen Appl Microbiol 1967; 13:279–301 [View Article]
    [Google Scholar]
  23. Grant SG, Jessee J, Bloom FR, Hanahan D. Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci USA 1990; 87:4645–4649 [View Article]
    [Google Scholar]
  24. Brenner S. The genetics of Caenorhabditis elegans . Genetics 1974; 77:71–94
    [Google Scholar]
  25. Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G et al. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum . Gene 1994; 145:69–73 [View Article]
    [Google Scholar]
  26. Jakoby M, Ngouoto-Nkili CE, Burkovski A. Construction and application of new Corynebacterium glutamicum vectors. Biotechnol Tech 1999; 13:437–441 [View Article]
    [Google Scholar]
  27. Ott L, McKenzie A, Baltazar MT, Britting S, Bischof A et al. Evaluation of invertebrate infection models for pathogenic corynebacteria. FEMS Immunol Med Microbiol 2012; 65:413–421 [View Article]
    [Google Scholar]
  28. Peterson WD Jr, Stulberg CS, Swanborg NK, Robinson AR. Glucose-6-phosphate dehydrogenase isoenzymes in human cell cultures determined by sucrose-agar gel and cellulose acetate zymograms. Exp Biol Med 1968; 128:772–776 [View Article]
    [Google Scholar]
  29. Tsuchiya S, Yamabe M, Yamaguchi Y, Kobayashi Y, Konno T et al. Establishment and characterization of a human acute monocytic leukemia cell line (THP-1). Int J Cancer 1980; 26:171–176 [View Article]
    [Google Scholar]
  30. Yasumura Y, Kawakita Y. Studies on SV40 in tissue culture: preliminary step for cancer research in vitro . Nihon Rinsho 1963; 21:1201–1215
    [Google Scholar]
  31. McWilliam H, Li W, Uludag M, Squizzato S, Park YM et al. Analysis tool web services from the EMBL-EBI. Nucleic Acids Res 2013; 41:W597–W600 [View Article]
    [Google Scholar]
  32. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal omega. Mol Syst Biol 2011; 7:539 [View Article]
    [Google Scholar]
  33. Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nat Methods 2011; 8:785–786 [View Article]
    [Google Scholar]
  34. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 2015; 10:845–858 [View Article]
    [Google Scholar]
  35. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM et al. UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 2004; 25:1605–1612 [View Article]
    [Google Scholar]
  36. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: a Laboratory Manual , 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1989
    [Google Scholar]
  37. Ott L, Höller M, Rheinlaender J, Schäffer TE, Hensel M et al. Strain-specific differences in pili formation and the interaction of Corynebacterium diphtheriae with host cells. BMC Microbiol 2010; 10:257 [View Article]
    [Google Scholar]
  38. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72:248–254 [View Article]
    [Google Scholar]
  39. Wiśniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods 2009; 6:359–362 [View Article]
    [Google Scholar]
  40. Kraner ME, Müller C, Sonnewald U. Comparative proteomic profiling of the choline transporter-like1 (CHER1) mutant provides insights into plasmodesmata composition of fully developed Arabidopsis thaliana leaves. Plant J 2017; 92:696–709 [View Article]
    [Google Scholar]
  41. Zhang J, Xin L, Shan B, Chen W, Xie M et al. Peaks DB: de Novo sequencing assisted database search for sensitive and accurate peptide identification. Mol Cell Proteomics 2012; 11:M111.010587 [View Article]
    [Google Scholar]
  42. Weerasekera D, Stengel F, Sticht H, de Mattos Guaraldi AL, Burkovski A et al. The C-terminal coiled-coil domain of Corynebacterium diphtheriae DIP0733 is crucial for interaction with epithelial cells and pathogenicity in invertebrate animal model systems. BMC Microbiol 2018; 18:106 [View Article]
    [Google Scholar]
  43. de Bono M, Bargmann CI. Natural variation in a neuropeptide Y receptor homolog modifies social behavior and food response in C. elegans . Cell 1998; 94:679–689 [View Article]
    [Google Scholar]
  44. Loh JMS, Adenwalla N, Wiles S, Proft T. Galleria mellonella larvae as an infection model for group A streptococcus. Virulence 2013; 4:419–428 [View Article]
    [Google Scholar]
  45. Hacker E, Ott L, Schulze-Luehrmann J, Lührmann A, Wiesmann V et al. The killing of macrophages by Corynebacterium ulcerans . Virulence 2016; 7:45–55 [View Article]
    [Google Scholar]
  46. Ott L, Burkovski A. Toxigenic corynebacteria: adhesion, invasion and host response. In Burkovski A. editor Corynebacterium diphtheriae and Related Toxigenic Species Dordrecht: Springer; 2014 pp 143–170
    [Google Scholar]
  47. Hacker E, Ott L, Hasselt K, Mattos-Guaraldi AL, Tauch A et al. Colonization of human epithelial cell lines by Corynebacterium ulcerans from human and animal sources. Microbiology 2015; 161:1582–1591 [View Article]
    [Google Scholar]
  48. Bittel M, Gastiger S, Amin B, Hofmann J, Burkovski A. Surface and extracellular proteome of the emerging pathogen Corynebacterium ulcerans . Proteomes 2018; 6:18 [View Article]
    [Google Scholar]
  49. Ott L, Höller M, Rheinlaender J, Schäffer TE, Hensel M et al. Strain-specific differences in pili formation and the interaction of Corynebacterium diphtheriae with host cells. BMC Microbiol 2010; 10:257 [View Article]
    [Google Scholar]
  50. Hacker E, Antunes CA, Mattos-Guaraldi AL, Burkovski A, Tauch A. Corynebacterium ulcerans, an emerging human pathogen. Future Microbiol 2016; 11:1191–1208 [View Article]
    [Google Scholar]
  51. Klümper U, Riber L, Dechesne A, Sannazzarro A, Hansen LH et al. Broad host range plasmids can invade an unexpectedly diverse fraction of a soil bacterial community. ISME J 2015; 9:934–945 [View Article]
    [Google Scholar]
  52. Jiang X, Ellabaan MMH, Charusanti P, Munck C, Blin K et al. Dissemination of antibiotic resistance genes from antibiotic producers to pathogens. Nat Commun 2017; 8:15784 [View Article]
    [Google Scholar]
  53. Efstratiou A, Engler KH, Mazurova IK, Glushkevich T, Vuopio-Varkila J et al. Current approaches to the laboratory diagnosis of diphtheria. J Infect Dis 2000; 181:S138–S145 [View Article]
    [Google Scholar]
  54. Wagner KS, White JM, Neal S, Crowcroft NS, Kuprevičiene N et al. Screening for Corynebacterium diphtheriae and Corynebacterium ulcerans in patients with upper respiratory tract infections 2007-2008: a multicentre European study. Clin Microbiol Infect 2011; 17:519–525 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000820
Loading
/content/journal/micro/10.1099/mic.0.000820
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error