1887

Abstract

Methicillin-resistant is a ‘superbug’ that is responsible for extensive death and morbidity. Chronic infections are associated with the presence of intracellular bacteria and the host cytosol is an aerobic low-redox-potential (E) environment. How adapts to aerobic low-E environments is understudied. A low external E, imposed by the non-metabolizable reductant dithiothreitol, resulted in transcriptional reprogramming mediated by the redox-responsive transcription factors AgrA, Rex and SrrBA, resulting in a shift towards fermentative metabolism. Accordingly, in the presence of the host cytoplasmic reductant glutathione, the aerobic respiration of was impaired, the intracellular NADH:NAD ratio increased, lactate dehydrogenase was induced, resistance to the aminoglycoside antibiotic gentamicin was enhanced and greater numbers of small-colony variants (SCVs) were detected. These observations suggest that entry of into the aerobic low-E environment of the host cytosol could result in adaptive responses that promote the formation of SCVs.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000809
2019-07-01
2020-01-29
Loading full text...

Full text loading...

References

  1. Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VG. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 2015;28:603–661 [CrossRef]
    [Google Scholar]
  2. Allison KR, Brynildsen MP, Collins JJ. Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature 2011;473:216–220 [CrossRef]
    [Google Scholar]
  3. Kim N-H, Kang YM, Han WD, Park KU, Park K-H et al. Small-colony variants in persistent and recurrent Staphylococcus aureus bacteremia. Microb Drug Resist 2016;22:538–544 [CrossRef]
    [Google Scholar]
  4. Löffler B, Tuchscherr L, Niemann S, Peters G. Staphylococcus aureus persistence in non-professional phagocytes. Int J Med Microbiol 2014;304:170–176 [CrossRef]
    [Google Scholar]
  5. Sendi P, Proctor RA. Staphylococcus aureus as an intracellular pathogen: the role of small colony variants. Trends Microbiol 2009;17:54–58 [CrossRef]
    [Google Scholar]
  6. Vesga O, Groeschel MC, Otten MF, Brar DW, Vann JM et al. Staphylococcus aureus small colony variants are induced by the endothelial cell intracellular milieu. J Infect Dis 1996;173:739–742 [CrossRef]
    [Google Scholar]
  7. Proctor RA, van Langevelde P, Kristjansson M, Maslow JN, Arbeit RD. Persistent and relapsing infections associated with small-colony variants of Staphylococcus aureus. Clin Infect Dis 1995;20:95–102 [CrossRef]
    [Google Scholar]
  8. von Eiff C, Becker K, Metze D, Lubritz G, Hockmann J et al. Intracellular persistence of Staphylococcus aureus small-colony variants within keratinocytes: a cause for antibiotic treatment failure in a patient with Darier's disease. Clin Infect Dis 2001;32:1643–1647 [CrossRef]
    [Google Scholar]
  9. Tuchscherr L, Heitmann V, Hussain M, Viemann D, Roth J et al. Staphylococcus aureus small-colony variants are adapted phenotypes for intracellular persistence. J Infect Dis 2010;202:1031–1040 [CrossRef]
    [Google Scholar]
  10. Tuchscherr L, Medina E, Hussain M, Völker W, Heitmann V et al. Staphylococcus aureus phenotype switching: an effective bacterial strategy to escape host immune response and establish a chronic infection. EMBO Mol Med 2011;3:129–141 [CrossRef]
    [Google Scholar]
  11. Cao S, Huseby DL, Brandis G, Hughes D. Alternative evolutionary pathways for drug-resistant small colony variant mutants in Staphylococcus aureus. MBio 2017;8:e00358–17 [CrossRef]
    [Google Scholar]
  12. Massey RC, Buckling A, Peacock SJ. Phenotypic switching of antibiotic resistance circumvents permanent costs in Staphylococcus aureus. Curr Biol 2001;11:1810–1814 [CrossRef]
    [Google Scholar]
  13. Hwang C, Sinskey AJ, Lodish HF. Oxidized redox state of glutathione in the endoplasmic reticulum. Science 1992;257:1496–1502 [CrossRef]
    [Google Scholar]
  14. Grosz M, Kolter J, Paprotka K, Winkler A-C, Schäfer D et al. Cytoplasmic replication of Staphylococcus aureus upon phagosomal escape triggered by phenol-soluble modulin α. Cell Microbiol 2014;16:451–465 [CrossRef]
    [Google Scholar]
  15. Fey PD, Endres JL, Yajjala VK, Widhelm TJ, Boissy RJ et al. A genetic resource for rapid and comprehensive phenotype screening of nonessential Staphylococcus aureus genes. MBio 2013;4:e00537–12 [CrossRef]
    [Google Scholar]
  16. Nair D, Memmi G, Hernandez D, Bard J, Beaume M et al. Whole-genome sequencing of Staphylococcus aureus strain RN4220, a key laboratory strain used in virulence research, identifies mutations that affect not only virulence factors but also the fitness of the strain. J Bacteriol 2011;193:2332–2335 [CrossRef]
    [Google Scholar]
  17. Sambrook J, Russell DW. Molecular Cloning a Laboratory Mannual New York: Cold Spring Harbor Press, Cold Spring Harbor; 2001
    [Google Scholar]
  18. Lithgow JK, Hayhurst EJ, Cohen G, Aharonowitz Y, Foster SJ. Role of a cysteine synthase in Staphylococcus aureus. J Bacteriol 2004;186:1579–1590 [CrossRef]
    [Google Scholar]
  19. Asif HMS, Rolfe MD, Green J, Lawrence ND, Rattray M et al. TFInfer: a tool for probabilistic inference of transcription factor activities. Bioinformatics 2010;26:2635–2636 [CrossRef]
    [Google Scholar]
  20. Kiedrowski MR, Kavanaugh JS, Malone CL, Mootz JM, Voyich JM et al. Nuclease modulates biofilm formation in community-associated methicillin-resistant Staphylococcus aureus. PLoS One 2011;6:e26714 [CrossRef]
    [Google Scholar]
  21. Bernofsky C, Swan M. An improved cycling assay for nicotinamide adenine dinucleotide. Anal Biochem 1973;53:452–458 [CrossRef]
    [Google Scholar]
  22. Nouaille S, Rault L, Jeanson S, Loubière P, Le Loir Y et al. Contribution of Lactococcus lactis reducing properties to the downregulation of a major virulence regulator in Staphylococcus aureus, the agr system. Appl Environ Microbiol 2014;80:7028–7035 [CrossRef]
    [Google Scholar]
  23. Chen PR, Nishida S, Poor CB, Cheng A, Bae T et al. A new oxidative sensing and regulation pathway mediated by the MgrA homologue SarZ in Staphylococcus aureus. Mol Microbiol 2009;71:198–211 [CrossRef]
    [Google Scholar]
  24. Dunman PM, Murphy E, Haney S, Palacios D, Tucker-Kellogg G et al. Transcription profiling-based identification of Staphylococcus aureus genes regulated by the agr and/or sarA loci. J Bacteriol 2001;183:7341–7353 [CrossRef]
    [Google Scholar]
  25. Grossoehme N, Kehl-Fie TE, Ma Z, Adams KW, Cowart DM et al. Control of copper resistance and inorganic sulfur metabolism by paralogous regulators in Staphylococcus aureus. J Biol Chem 2011;286:13522–13531 [CrossRef]
    [Google Scholar]
  26. Kinkel TL, Roux CM, Dunman PM, Fang FC. The Staphylococcus aureus SrrAB two-component system promotes resistance to nitrosative stress and hypoxia. MBio 2013;4:e00696–13 [CrossRef]
    [Google Scholar]
  27. Luong TT, Dunman PM, Murphy E, Projan SJ, Lee CY. Transcription profiling of the mgrA regulon in Staphylococcus aureus. J Bacteriol 2006;188:1899–1910 [CrossRef]
    [Google Scholar]
  28. Pagels M, Fuchs S, Pané-Farré J, Kohler C, Menschner L et al. Redox sensing by a Rex-family repressor is involved in the regulation of anaerobic gene expression in Staphylococcus aureus. Mol Microbiol 2010;76:1142–1161 [CrossRef]
    [Google Scholar]
  29. Saïd-Salim B, Dunman PM, McAleese FM, Macapagal D, Murphy E et al. Global regulation of Staphylococcus aureus genes by rot. J Bacteriol 2003;185:610–619 [CrossRef]
    [Google Scholar]
  30. Schlag S, Fuchs S, Nerz C, Gaupp R, Engelmann S et al. Characterization of the oxygen-responsive NreABC regulon of Staphylococcus aureus. J Bacteriol 2008;190:7847–7858 [CrossRef]
    [Google Scholar]
  31. Soutourina O, Poupel O, Coppée J-Y, Danchin A, Msadek T et al. CymR, the master regulator of cysteine metabolism in Staphylococcus aureus , controls host sulphur source utilization and plays a role in biofilm formation. Mol Microbiol 2009;73:194–211 [CrossRef]
    [Google Scholar]
  32. Sun F, Ji Q, Jones MB, Deng X, Liang H et al. AirSR, a [2Fe-2S] cluster-containing two-component system, mediates global oxygen sensing and redox signaling in Staphylococcus aureus. J Am Chem Soc 2012;134:305–314 [CrossRef]
    [Google Scholar]
  33. Surmann K, Michalik S, Hildebrandt P, Gierok P, Depke M et al. Comparative proteome analysis reveals conserved and specific adaptation patterns of Staphylococcus aureus after internalization by different types of human non-professional phagocytic host cells. Front Microbiol 2014;5:392 [CrossRef]
    [Google Scholar]
  34. Richardson AR, Libby SJ, Fang FC. A nitric oxide-inducible lactate dehydrogenase enables Staphylococcus aureus to resist innate immunity. Science 2008;319:1672–1676 [CrossRef]
    [Google Scholar]
  35. Giese B, Glowinski F, Paprotka K, Dittmann S, Steiner T et al. Expression of δ-toxin by Staphylococcus aureus mediates escape from phago-endosomes of human epithelial and endothelial cells in the presence of β-toxin. Cell Microbiol 2011;13:316–329 [CrossRef]
    [Google Scholar]
  36. Xu T, Wang X-Y, Cui P, Zhang Y-M, Zhang W-H et al. The agr quorum sensing system represses persister formation through regulation of phenol soluble modulins in Staphylococcus aureus. Front Microbiol 2017;8:2189 [CrossRef]
    [Google Scholar]
  37. Snoep JL, de Graef MR, Westphal AH, de Kok A, Teixeira de Mattos MJ et al. Differences in sensitivity to NADH of purified pyruvate dehydrogenase complexes of Enterococcus faecalis, Lactococcus lactis, Azotobacter vinelandii and Escherichia coli: implications for their activity in vivo. FEMS Microbiol Lett 1993;114:279–283 [CrossRef]
    [Google Scholar]
  38. Mates SM, Eisenberg ES, Mandel LJ, Patel L, Kaback HR et al. Membrane potential and gentamicin uptake in Staphylococcus aureus. Proc Natl Acad Sci U S A 1982;79:6693–6697 [CrossRef]
    [Google Scholar]
  39. Edwards AM. Phenotype switching is a natural consequence of Staphylococcus aureus replication. J Bacteriol 2012;194:5404–5412 [CrossRef]
    [Google Scholar]
  40. Sun F, Liang H, Kong X, Xie S, Cho H et al. Quorum-sensing agr mediates bacterial oxidation response via an intramolecular disulfide redox switch in the response regulator AgrA. Proc Natl Acad Sci U S A 2012;109:9095–9100 [CrossRef]
    [Google Scholar]
  41. Portman JL, Dubensky SB, Peterson BN, Whiteley AT, Portnoy DA. Activation of the Listeria monocytogenes virulence program by a reducing environment. MBio 2017;8:e01595–17 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000809
Loading
/content/journal/micro/10.1099/mic.0.000809
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error