1887

Abstract

In contrast to obligate intracellular pathogens that can remain in relatively stable host-associated environments, the soil-living bacterial pathogen has to sense and respond to physical and chemical cues in a variety of quite different niches. In particular, the bacterium has to survive the dramatic transition from its saprophytic existence to life within the host where nutritional stress, increased temperature, acidity, osmotic stress and the host defences present a new and challenging landscape. This review focuses on the σ and PrfA regulatory systems used by to sense the changing environment and implement survival mechanisms that help to overcome the disparate conditions within the host, but also to switch from a harmless saprophyte to an impressively effective pathogen.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000808
2019-08-01
2019-08-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/165/8/819.html?itemId=/content/journal/micro/10.1099/mic.0.000808&mimeType=html&fmt=ahah

References

  1. Radoshevich L, Cossart P. Listeria monocytogenes: towards a complete picture of its physiology and pathogenesis. Nat Rev Microbiol 2018;16:32–46 [CrossRef]
    [Google Scholar]
  2. O’Byrne CP, Karatzas KA. The role of sigma B (σ B ) in the stress adaptations of Listeria monocytogenes: overlaps between stress adaptation and virulence. Adv Appl Microbiol 2008;65:
    [Google Scholar]
  3. Dorey A, Marinho C, Piveteau P, O'Byrne C. Role and regulation of the stress activated sigma factor sigma B (σ B ) in the saprophytic and host-associated life stages of Listeria monocytogenes. Adv Appl Microbiol 2019;106:1–48 [CrossRef]
    [Google Scholar]
  4. Gahan CGM, Hill C. Listeria monocytogenes: survival and adaptation in the gastrointestinal tract. Front Cell Infect Microbiol 2014;4:9 [CrossRef]
    [Google Scholar]
  5. Gahan CGM, Hill C. Gastrointestinal phase of Listeria monocytogenes infection. J Appl Microbiol 2005;98:1345–1353 [CrossRef]
    [Google Scholar]
  6. de las Heras A, Cain RJ, Bielecka MK, Vázquez-Boland JA. Regulation of Listeria virulence: PrfA master and commander. Curr Opin Microbiol 2011;14:118–127 [CrossRef]
    [Google Scholar]
  7. Freitag NE, Port GC, Miner MD. Listeria monocytogenes - from saprophyte to intracellular pathogen. Nat Rev Microbiol 2009;7:623–628 [CrossRef]
    [Google Scholar]
  8. Liu Y, Orsi RH, Boor KJ, Wiedmann M, Guariglia-Oropeza V. Home alone: elimination of all but one alternative sigma factor in Listeria monocytogenes allows prediction of new roles for σB. Front Microbiol 1910;2017:8
    [Google Scholar]
  9. Chaturongakul S, Raengpradub S, Palmer ME, Bergholz TM, Orsi RH et al. Transcriptomic and phenotypic analyses identify coregulated, overlapping regulons among PrfA, CtsR, HrcA, and the alternative sigma factors σB, σC, σH, and σL in Listeria monocytogenes. Appl Environ Microbiol 2011;77:187–200 [CrossRef]
    [Google Scholar]
  10. Guldimann C, Boor KJ, Wiedmann M, Guariglia-Oropeza V. Resilience in the face of uncertainty: sigma factor B fine-tunes gene expression to support homeostasis in gram-positive bacteria. Appl Environ Microbiol 2016;82:4456–4469 [CrossRef]
    [Google Scholar]
  11. Gandhi M, Chikindas ML. Listeria: a foodborne pathogen that knows how to survive. Int J Food Microbiol 2007;113:1–15 [CrossRef]
    [Google Scholar]
  12. Milohanic E, Glaser P, Coppée J-Y, Frangeul L, Vega Y et al. Transcriptome analysis of Listeria monocytogenes identifies three groups of genes differently regulated by PrfA. Mol Microbiol 2003;47:1613–1625 [CrossRef]
    [Google Scholar]
  13. Chatterjee SS, Hossain H, Otten S, Kuenne C, Kuchmina K et al. Intracellular gene expression profile of Listeria monocytogenes. Infect Immun 2006;74:1323–1338 [CrossRef]
    [Google Scholar]
  14. Ollinger J, Bowen B, Wiedmann M, Boor KJ, Bergholz TM. Listeria monocytogenes sigmaB modulates PrfA-mediated virulence factor expression. Infect Immun 2009;77:2113–2124 [CrossRef]
    [Google Scholar]
  15. Raengpradub S, Wiedmann M, Boor KJ. Comparative analysis of the sigma B-dependent stress responses in Listeria monocytogenes and Listeria innocua strains exposed to selected stress conditions. Appl Environ Microbiol 2008;74:158–171 [CrossRef]
    [Google Scholar]
  16. Toledo-Arana A, Dussurget O, Nikitas G, Sesto N, Guet-Revillet H et al. The Listeria transcriptional landscape from saprophytism to virulence. Nature 2009;459:950–956 [CrossRef]
    [Google Scholar]
  17. Oliver HF, Orsi RH, Wiedmann M, Boor KJ. Listeria monocytogenes {sigma}B has a small core regulon and a conserved role in virulence but makes differential contributions to stress tolerance across a diverse collection of strains. Appl Environ Microbiol 2010;76:4216–4232 [CrossRef]
    [Google Scholar]
  18. Ribeiro VB, Mujahid S, Orsi RH, Bergholz TM, Wiedmann M et al. Contributions of σB and PrfA to Listeria monocytogenes salt stress under food relevant conditions. Int J Food Microbiol 2014;177:98–108 [CrossRef]
    [Google Scholar]
  19. Wemekamp-Kamphuis HH, Wouters JA, de Leeuw PPLA, Hain T, Chakraborty T et al. Identification of sigma factor σB -controlled genes and their impact on acid stress, high hydrostatic pressure, and freeze survival in Listeria monocytogenes EGD-e. Appl Environ Microbiol 2004;70:3457–3466 [CrossRef]
    [Google Scholar]
  20. Abram F, Starr E, Karatzas KAG, Matlawska-Wasowska K, Boyd A et al. Identification of components of the sigma B regulon in Listeria monocytogenes that contribute to acid and salt tolerance. Appl Environ Microbiol 2008;74:6848–6858 [CrossRef]
    [Google Scholar]
  21. Abram F, Su W-L, Wiedmann M, Boor KJ, Coote P et al. Proteomic analyses of a Listeria monocytogenes mutant lacking σB identify new components of the σB regulon and highlight a role for σB in the utilization of glycerol. Appl Environ Microbiol 2008;74:594–604 [CrossRef]
    [Google Scholar]
  22. Shin J-H, Kim J, Kim S-M, Kim S, Lee J-C et al. σB -dependent protein induction in Listeria monocytogenes during vancomycin stress. FEMS Microbiol Lett 2010;308:94–100 [CrossRef]
    [Google Scholar]
  23. Wiedmann M, Arvik TJ, Hurley RJ, Boor KJ. General stress transcription factor σB and its role in acid tolerance and virulence of Listeria monocytogenes. J Bacteriol 1998;180:3650–3656
    [Google Scholar]
  24. Ferreira A, Sue D, O'Byrne CP, Boor KJ. Role of Listeria monocytogenes σB in survival of lethal acidic conditions and in the acquired acid tolerance response. Appl Environ Microbiol 2003;69:2692–2698 [CrossRef]
    [Google Scholar]
  25. Davis MJ, Coote PJ, O'Byrne CP. Acid tolerance in Listeria monocytogenes: the adaptive acid tolerance response (ATR) and growth-phase-dependent acid resistance. Microbiology 1996;142:2975–2982 [CrossRef]
    [Google Scholar]
  26. Kazmierczak MJ, Mithoe SC, Boor KJ, Wiedmann M. Listeria monocytogenes σB regulates stress response and virulence functions. J Bacteriol 2003;185:5722–5734 [CrossRef]
    [Google Scholar]
  27. Cotter PD, Gahan CG, Hill C. A glutamate decarboxylase system protects Listeria monocytogenes in gastric fluid. Mol Microbiol 2001;40:465–475 [CrossRef]
    [Google Scholar]
  28. Cotter PD, Ryan S, Gahan CGM, Hill C. Presence of GadD1 glutamate decarboxylase in selected Listeria monocytogenes strains is associated with an ability to grow at low pH. Appl Environ Microbiol 2005;71:2832–2839 [CrossRef]
    [Google Scholar]
  29. Feehily C, O’Byrne CP, Karatzas K-AG. Listeria monocytogenes has a functional γ-aminobutyrate (GABA) shunt: Role in acid tolerance and succinate biosynthesis. Appl Environ Microbiol 2012;AEM:02184–12
    [Google Scholar]
  30. Cole TJ. The LMS method for constructing normalized growth standards. Eur J Clin Nutr 1990;44:45–60
    [Google Scholar]
  31. Fraser KR, Harvie D, Coote PJ, O'Byrne CP. Identification and characterization of an ATP binding cassette L-carnitine transporter in Listeria monocytogenes. Appl Environ Microbiol 2000;66:4696–4704 [CrossRef]
    [Google Scholar]
  32. Fraser KR, Sue D, Wiedmann M, Boor K, O'Byrne CP. Role of σB in regulating the compatible solute uptake systems of Listeria monocytogenes: osmotic induction of opuC is σB dependent. Appl Environ Microbiol 2003;69:2015–2022 [CrossRef]
    [Google Scholar]
  33. Sleator RD, Gahan CG, Abee T, Hill C. Identification and disruption of BetL, a secondary glycine betaine transport system linked to the salt tolerance of Listeria monocytogenes LO28. Appl Environ Microbiol 1999;65:2078–2083
    [Google Scholar]
  34. Ko R, Smith LT. Identification of an ATP-driven, osmoregulated glycine betaine transport system in Listeria monocytogenes. App Environ microbiol 1999;65:4040–4048
    [Google Scholar]
  35. Cetin MS, Zhang C, Hutkins RW, Benson AK. Regulation of transcription of compatible solute transporters by the general stress sigma factor, σB, in Listeria monocytogenes. J Bacteriol 2004;186:794–802 [CrossRef]
    [Google Scholar]
  36. Begley M, Hill C, Ross RP. Tolerance of Listeria monocytogenes to cell envelope-acting antimicrobial agents is dependent on SigB. Appl Environ Microbiol 2006;72:2231–2234 [CrossRef]
    [Google Scholar]
  37. Palmer ME, Wiedmann M, Boor KJ. σB and σL contribute to Listeria monocytogenes 10403S response to the antimicrobial peptides SdpC and nisin. Foodborne Pathog Dis 2009;6:1057–1065 [CrossRef]
    [Google Scholar]
  38. Sue D, Boor KJ, Wiedmann M. σB-dependent expression patterns of compatible solute transporter genes opuCA and lmo1421 and the conjugated bile salt hydrolase gene bsh in Listeria monocytogenes. Microbiology 2003;149:3247–3256 [CrossRef]
    [Google Scholar]
  39. Sleator RD, Wemekamp-Kamphuis HH, Gahan CGM, Abee T, Hill C. A PrfA-regulated bile exclusion system (bile) is a novel virulence factor in Listeria monocytogenes. Mol Microbiol 2005;55:1183–1195 [CrossRef]
    [Google Scholar]
  40. Sleator RD, Hill C. A novel role for the LisRK two-component regulatory system in listerial osmotolerance. Clin Microbiol Infect 2005;11:599–601 [CrossRef]
    [Google Scholar]
  41. Hardy J, Francis KP, DeBoer M, Chu P, Gibbs K et al. Extracellular replication of Listeria monocytogenes in the murine gall bladder. Science 2004;303:851–853 [CrossRef]
    [Google Scholar]
  42. Dowd GC, Joyce SA, Hill C, Gahan CGM. Investigation of the mechanisms by which Listeria monocytogenes grows in porcine gallbladder bile. Infect Immun 2011;79:369–379 [CrossRef]
    [Google Scholar]
  43. Sleator RD, Wouters J, Gahan CGM, Abee T, Hill C. Analysis of the role of OpuC, an osmolyte transport system, in salt tolerance and virulence potential of Listeria monocytogenes. Applied and Environmental Microbiology 2001;67:2692–2698 [CrossRef]
    [Google Scholar]
  44. Kim H, Boor KJ, Marquis H. Listeria monocytogenes σB contributes to invasion of human intestinal epithelial cells. Infect Immun 2004;72:7374–7378 [CrossRef]
    [Google Scholar]
  45. McGann P, Wiedmann M, Boor KJ. The alternative sigma factor σB and the virulence gene regulator PrfA Both regulate transcription of Listeria monocytogenes internalins. Applied and Environmental Microbiology 2007;73:2919–2930 [CrossRef]
    [Google Scholar]
  46. Martinez L, Reeves A, Haldenwang W. Stressosomes formed in Bacillus subtilis from the RsbR protein of Listeria monocytogenes allow σB activation following exposure to either physical or nutritional stress. J Bacteriol 2010;192:6279–6286 [CrossRef]
    [Google Scholar]
  47. Pané-Farré J, Quin MB, Lewis RJ, Marles-Wright J. Structure and Function of the Stressosome Signalling Hub Macromolecular Protein Complexes: Springer; 2017; pp1–41
    [Google Scholar]
  48. Ferreira A, Gray M, Wiedmann M, Boor KJ. Comparative genomic analysis of the sigB operon in Listeria monocytogenes and in other gram-positive bacteria. Curr Microbiol 2004;48:39–46 [CrossRef]
    [Google Scholar]
  49. Marles-Wright J, Lewis RJ. The Bacillus subtilis stressosome: A signal integration and transduction hub. Commun Integr Biol 2008;1:182–184
    [Google Scholar]
  50. Ondrusch N, Kreft J. Blue and red light modulates SigB-dependent gene transcription, swimming motility and invasiveness in Listeria monocytogenes. PLoS One 2011;6:e16151 [CrossRef]
    [Google Scholar]
  51. Delumeau O, Chen C-C, Murray JW, Yudkin MD, Lewis RJ. High-molecular-weight complexes of RsbR and paralogues in the environmental signaling pathway of Bacillus subtilis. J Bacteriol 2006;188:7885–7892 [CrossRef]
    [Google Scholar]
  52. Impens F, Rolhion N, Radoshevich L, Bécavin C, Duval M et al. N-terminomics identifies Prli42 as a membrane miniprotein conserved in Firmicutes and critical for stressosome activation in Listeria monocytogenes. Nat Microbiol 2017;2:17005 [CrossRef]
    [Google Scholar]
  53. Aravind L, Koonin EV. The STAS domain - a link between anion transporters and antisigma-factor antagonists. Curr Biol 2000;10:R53–R55 [CrossRef]
    [Google Scholar]
  54. Marles-Wright J, Grant T, Delumeau O, van Duinen G, Firbank SJ et al. Molecular architecture of the "stressosome", a signal integration and transduction hub. Science 2008;322:92–96 [CrossRef]
    [Google Scholar]
  55. Pané-Farré J, Lewis RJ, Stülke J. The RsbRST stress module in bacteria: a signalling system that may interact with different output modules. J Mol Microbiol Biotechnol 2005;9:65–76 [CrossRef]
    [Google Scholar]
  56. Stranzl GR, Santelli E, Bankston LA, La Clair C, Bobkov A et al. Structural insights into inhibition of Bacillus anthracis sporulation by a novel class of non-heme globin sensor domains. Journal of Biological Chemistry 2011;jbc:M110–207126
    [Google Scholar]
  57. Losi A, Polverini E, Quest B, Gärtner W. First evidence for phototropin-related blue-light receptors in prokaryotes. Biophys J 2002;82:2627–2634 [CrossRef]
    [Google Scholar]
  58. Murray JW, Delumeau O, Lewis RJ. Structure of a nonheme globin in environmental stress signaling. Proc Natl Acad Sci U S A 2005;102:17320–17325 [CrossRef]
    [Google Scholar]
  59. Jurk M, Dorn M, Kikhney A, Svergun D, Gärtner W et al. The switch that does not flip: the blue-light receptor YtvA from Bacillus subtilis adopts an elongated dimer conformation independent of the activation state as revealed by a combined AUC and SAXS study. J Mol Biol 2010;403:78–87 [CrossRef]
    [Google Scholar]
  60. van der Steen JB, Avila-Pérez M, Knippert D, Vreugdenhil A, van Alphen P et al. Differentiation of function among the RsbR paralogs in the general stress response of Bacillus subtilis with regard to light perception. J Bacteriol 2012;194:1708–1716 [CrossRef]
    [Google Scholar]
  61. Akbar S, Gaidenko TA, Kang CM, O'Reilly M, Devine KM et al. New family of regulators in the environmental signaling pathway which activates the general stress transcription factor σB of Bacillus subtilis. J Bacteriol 2001;183:1329–1338 [CrossRef]
    [Google Scholar]
  62. Jurk M, Schramm P, Schmieder P. The blue-light receptor YtvA from Bacillus subtilis is permanently incorporated into the stressosome independent of the illumination state. Biochem Biophys Res Commun 2013;432:499–503 [CrossRef]
    [Google Scholar]
  63. Kim T-J, Gaidenko TA, Price CW. A multicomponent protein complex mediates environmental stress signaling in Bacillus subtilis. J Mol Biol 2004;341:135–150 [CrossRef]
    [Google Scholar]
  64. Möglich A, Moffat K. Structural basis for light-dependent signaling in the dimeric LOV domain of the photosensor YtvA. J Mol Biol 2007;373:112–126 [CrossRef]
    [Google Scholar]
  65. Kang CM, Vijay K, Price CW. Serine kinase activity of a Bacillus subtilis switch protein is required to transduce environmental stress signals but not to activate its target PP2C phosphatase. Mol Microbiol 1998;30:189–196 [CrossRef]
    [Google Scholar]
  66. Chen C-C, Lewis RJ, Harris R, Yudkin MD, Delumeau O. A supramolecular complex in the environmental stress signalling pathway of Bacillus subtilis. Mol Microbiol 2003;49:1657–1669 [CrossRef]
    [Google Scholar]
  67. Kim T-J, Gaidenko TA, Price CW. In vivo phosphorylation of partner switching regulators correlates with stress transmission in the environmental signaling pathway of Bacillus subtilis. J Bacteriol 2004;186:6124–6132 [CrossRef]
    [Google Scholar]
  68. Gaidenko TA, Price CW. Genetic evidence for a phosphorylation-independent signal transduction mechanism within the Bacillus subtilis stressosome. PLoS One 2014;9:e90741 [CrossRef]
    [Google Scholar]
  69. Gaidenko TA, Yang X, Lee YM, Price CW. Threonine phosphorylation of modulator protein RsbR governs its ability to regulate a serine kinase in the environmental stress signaling pathway of Bacillus subtilis 1. J Mol Biol 1999;288:29–39 [CrossRef]
    [Google Scholar]
  70. Jia X, Wang J-B, Rivera S, Duong D, Weinert EE. An O2-sensing stressosome from a gram-negative bacterium. Nat Commun 2016;7:12381 [CrossRef]
    [Google Scholar]
  71. Yang X, Kang CM, Brody MS, Price CW. Opposing pairs of serine protein kinases and phosphatases transmit signals of environmental stress to activate a bacterial transcription factor. Genes Dev 1996;10:2265–2275 [CrossRef]
    [Google Scholar]
  72. Kang CM, Brody MS, Akbar S, Yang X, Price CW. Homologous pairs of regulatory proteins control activity of Bacillus subtilis transcription factor sigma(b) in response to environmental stress. J Bacteriol 1996;178:3846–3853 [CrossRef]
    [Google Scholar]
  73. Eymann C, Schulz S, Gronau K, Becher D, Hecker M et al. In vivo phosphorylation patterns of key stressosome proteins define a second feedback loop that limits activation of Bacillus subtilis σB. Mol Microbiol 2011;80:798–810 [CrossRef]
    [Google Scholar]
  74. Cabeen MT, Russell JR, Paulsson J, Losick R. Use of a microfluidic platform to uncover basic features of energy and environmental stress responses in individual cells of Bacillus subtilis. PLoS Genet 2017;13:e1006901 [CrossRef]
    [Google Scholar]
  75. O'Donoghue B. A molecular genetic investigation into stress sensing in the food-borne pathogen Listeria monocytogenes: roles for RsbR and its paralogues. 2016
  76. Avila-Pérez M, van der Steen JB, Kort R, Hellingwerf KJ. Red light activates the σB-mediated general stress response of Bacillus subtilis via the energy branch of the upstream signaling cascade. J Bacteriol 2010;192:755–762 [CrossRef]
    [Google Scholar]
  77. Gaidenko TA, Kim T-J, Weigel AL, Brody MS, Price CW. The blue-light receptor YtvA acts in the environmental stress signaling pathway of Bacillus subtilis. J Bacteriol 2006;188:6387–6395 [CrossRef]
    [Google Scholar]
  78. Tiensuu T, Andersson C, Rydén P, Johansson J. Cycles of light and dark co-ordinate reversible colony differentiation in Listeria monocytogenes. Mol Microbiol 2013;87:909–924 [CrossRef]
    [Google Scholar]
  79. Crosson S, Moffat K. Photoexcited structure of a plant photoreceptor domain reveals a light-driven molecular switch. Plant Cell 2002;14:1067–1075 [CrossRef]
    [Google Scholar]
  80. Salomon M, Eisenreich W, Dürr H, Schleicher E, Knieb E et al. An optomechanical transducer in the blue light receptor phototropin from Avena sativa. Proc Natl Acad Sci U S A 2001;98:12357–12361 [CrossRef]
    [Google Scholar]
  81. O'Donoghue B, NicAogáin K, Bennett C, Conneely A, Tiensuu T et al. Blue-light inhibition of Listeria monocytogenes growth is mediated by reactive oxygen species and is influenced by σB and the blue-light sensor Lmo0799. Appl Environ Microbiol 2016;82:4017–4027 [CrossRef]
    [Google Scholar]
  82. Avila-Pérez M, Hellingwerf KJ, Kort R. Blue light activates the σB dependent stress response of Bacillus subtilis via YtvA. J Bacteriol 2006;188:6411–6414 [CrossRef]
    [Google Scholar]
  83. Chan RH, Lewis JW, Bogomolni RA. Photocycle of the LOV-STAS protein from the pathogen Listeria monocytogenes. Photochem Photobiol 2013;89:361–369 [CrossRef]
    [Google Scholar]
  84. Hecker M, Pané-Farré J, Völker U, Uwe V. SigB-dependent general stress response in Bacillus subtilis and related gram-positive bacteria. Annu Rev Microbiol 2007;61:215–236 [CrossRef]
    [Google Scholar]
  85. Vijay K, Brody MS, Fredlund E, Price CW. A PP2C phosphatase containing a PAS domain is required to convey signals of energy stress to the σB transcription factor of Bacillus subtilis. Mol Microbiol 2000;35:180–188 [CrossRef]
    [Google Scholar]
  86. Chaturongakul S, Boor KJ. RsbT and RsbV contribute to σB-dependent survival under environmental, energy, and intracellular stress conditions in Listeria monocytogenes. Appl Environ Microbiol 2004;70:5349–5356 [CrossRef]
    [Google Scholar]
  87. Brigulla M, Hoffmann T, Krisp A, Völker A, Bremer E et al. Chill induction of the SigB-dependent general stress response in Bacillus subtilis and its contribution to low-temperature adaptation. J Bacteriol 2003;185:4305–4314 [CrossRef]
    [Google Scholar]
  88. Utratna M, Cosgrave E, Baustian C, Ceredig RH, O'Byrne CP. Effects of growth phase and temperature on σB activity within a Listeria monocytogenes population: evidence for RsbV-independent activation of σB at refrigeration temperatures. Biomed Res Int 2014;2014:641647 [CrossRef]
    [Google Scholar]
  89. Chakraborty T, Leimeister-Wächter M, Domann E, Hartl M, Goebel W et al. Coordinate regulation of virulence genes in Listeria monocytogenes requires the product of the prfA gene. J Bacteriol 1992;174:568–574 [CrossRef]
    [Google Scholar]
  90. Freitag NE, Rong L, Portnoy DA. Regulation of the prfA transcriptional activator of Listeria monocytogenes: multiple promoter elements contribute to intracellular growth and cell-to-cell spread. Infect Immun 1993;61:2537–2544
    [Google Scholar]
  91. Mengaud J, Dramsi S, Gouin E, Vazquez-Boland JA, Milon G et al. Pleiotropic control of Listeria monocytogenes virulence factors by a gene that is autoregulated. Mol Microbiol 1991;5:2273–2283 [CrossRef]
    [Google Scholar]
  92. Leimeister-Wächter M, Haffner C, Domann E, Goebel W, Chakraborty T. Identification of a gene that positively regulates expression of listeriolysin, the major virulence factor of Listeria monocytogenes. Proc Natl Acad Sci U S A 1990;87:8336–8340 [CrossRef]
    [Google Scholar]
  93. Thomsen LE, Slutz SS, Tan M-W, Ingmer H. Caenorhabditis elegans is a model host for Listeria monocytogenes. Appl Environ Microbiol 2006;72:1700–1701 [CrossRef]
    [Google Scholar]
  94. Andersson C, Gripenland J, Johansson J. Using the chicken embryo to assess virulence of Listeria monocytogenes and to model other microbial infections. Nat Protoc 2015;10:1155–1164 [CrossRef]
    [Google Scholar]
  95. Vasanthakrishnan RB, de Las Heras A, Scortti M, Deshayes C, Colegrave N et al. PrfA regulation offsets the cost of Listeria virulence outside the host. Environ Microbiol 2015;17:4566–4579 [CrossRef]
    [Google Scholar]
  96. Bruno JC, Freitag NE. Constitutive activation of PrfA tilts the balance of Listeria monocytogenes fitness towards life within the host versus environmental survival. PLoS One 2010;5:e15138 [CrossRef]
    [Google Scholar]
  97. Freitag NE, Portnoy DA. Dual promoters of the Listeria monocytogenes prfA transcriptional activator appear essential in vitro but are redundant in vivo. Mol Microbiol 1994;12:845–853 [CrossRef]
    [Google Scholar]
  98. Nadon CA, Bowen BM, Wiedmann M, Boor KJ. Sigma B contributes to PrfA-mediated virulence in Listeria monocytogenes. Infect Immun 2002;70:3948–3952 [CrossRef]
    [Google Scholar]
  99. Rauch M, Luo Q, Müller-Altrock S, Goebel W. SigB-dependent in vitro transcription of prfA and some newly identified genes of Listeria monocytogenes whose expression is affected by PrfA in vivo. J Bacteriol 2005;187:800–804 [CrossRef]
    [Google Scholar]
  100. Schwab U, Bowen B, Nadon C, Wiedmann M, Boor KJ. The Listeria monocytogenes prfAP2 promoter is regulated by sigma B in a growth phase dependent manner. FEMS Microbiol Lett 2005;245:329–336 [CrossRef]
    [Google Scholar]
  101. Kazmierczak MJ, Wiedmann M, Boor KJ. Contributions of Listeria monocytogenes σB and PrfA to expression of virulence and stress response genes during extra- and intracellular growth. Microbiology 2006;152:1827–1838 [CrossRef]
    [Google Scholar]
  102. Camilli A, Tilney LG, Portnoy DA. Dual roles of plcA in Listeria monocytogenes pathogenesis. Mol Microbiol 1993;8:143–157 [CrossRef]
    [Google Scholar]
  103. Leimeister-Wächter M, Domann E, Chakraborty T. The expression of virulence genes in Listeria monocytogenes is thermoregulated. J Bacteriol 1992;174:947–952 [CrossRef]
    [Google Scholar]
  104. Lobel L, Sigal N, Borovok I, Ruppin E, Herskovits AA. Integrative genomic analysis identifies isoleucine and CodY as regulators of Listeria monocytogenes virulence. PLoS Genet 2012;8:e1002887 [CrossRef]
    [Google Scholar]
  105. Lobel L, Sigal N, Borovok I, Belitsky BR, Sonenshein AL et al. The metabolic regulator CodY links Listeria monocytogenes metabolism to virulence by directly activating the virulence regulatory gene prfA. Mol Microbiol 2015;95:624–644 [CrossRef]
    [Google Scholar]
  106. Whiteley AT, Pollock AJ, Portnoy DA. The PAMP c-di-AMP is essential for Listeria monocytogenes growth in rich but not minimal media due to a toxic increase in (p)ppGpp. Cell Host Microbe 2015;17:788–798 [CrossRef]
    [Google Scholar]
  107. Elbakush AM, Miller KW, Gomelsky M. CodY-mediated c-di-GMP-dependent inhibition of mammalian cell invasion in Listeria monocytogenes. J Bacteriol 2018;200:e00457–17 [CrossRef]
    [Google Scholar]
  108. Johansson J, Mandin P, Renzoni A, Chiaruttini C, Springer M et al. An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes. Cell 2002;110:551–561 [CrossRef]
    [Google Scholar]
  109. Loh E, Memarpour F, Vaitkevicius K, Kallipolitis BH, Johansson J et al. An unstructured 5'-coding region of the prfA mRNA is required for efficient translation. Nucleic Acids Res 2012;40:1818–1827 [CrossRef]
    [Google Scholar]
  110. Loh E, Dussurget O, Gripenland J, Vaitkevicius K, Tiensuu T et al. A trans-acting riboswitch controls expression of the virulence regulator PrfA in Listeria monocytogenes. Cell 2009;139:770–779 [CrossRef]
    [Google Scholar]
  111. Lotz TS, Suess B. Small-molecule-binding riboswitches. Microbiol Spectr 2018;6: [CrossRef]
    [Google Scholar]
  112. Lampidis R, Gross R, Sokolovic Z, Goebel W, Kreft J. The virulence regulator protein of Listeria ivanovii is highly homologous to PrfA from Listeria monocytogenes and both belong to the CRP-FNR family of transcription regulators. Mol Microbiol 1994;13:141–151 [CrossRef]
    [Google Scholar]
  113. Ripio MT, Domínguez-Bernal G, Lara M, Suárez M, Vazquez-Boland JA. A Gly145Ser substitution in the transcriptional activator PrfA causes constitutive overexpression of virulence factors in Listeria monocytogenes. J Bacteriol 1997;179:1533–1540 [CrossRef]
    [Google Scholar]
  114. Vega Y, Dickneite C, Ripio MT, Böckmann R, González-Zorn B et al. Functional similarities between the Listeria monocytogenes virulence regulator PrfA and cyclic AMP receptor protein: the PrfA* (Gly145Ser) mutation increases binding affinity for target DNA. J Bacteriol 1998;180:6655–6660
    [Google Scholar]
  115. Reniere ML, Whiteley AT, Hamilton KL, John SM, Lauer P et al. Glutathione activates virulence gene expression of an intracellular pathogen. Nature 2015;517:170–173 [CrossRef]
    [Google Scholar]
  116. Hall M, Grundström C, Begum A, Lindberg MJ, Sauer UH et al. Structural basis for glutathione-mediated activation of the virulence regulatory protein PrfA in Listeria. Proc Natl Acad Sci U S A 2016;113:14733–14738 [CrossRef]
    [Google Scholar]
  117. Wang Y, Feng H, Zhu Y, Gao P. Structural insights into glutathione-mediated activation of the master regulator PrfA in Listeria monocytogenes. Protein Cell 2017;8:308–312 [CrossRef]
    [Google Scholar]
  118. Gopal S, Borovok I, Ofer A, Yanku M, Cohen G et al. A multidomain fusion protein in Listeria monocytogenes catalyzes the two primary activities for glutathione biosynthesis. J Bacteriol 2005;187:3839–3847 [CrossRef]
    [Google Scholar]
  119. Portman JL, Dubensky SB, Peterson BN, Whiteley AT, Portnoy DA. Activation of the Listeria monocytogenes virulence program by a reducing environment. MBio 2017;8:e01595–17 [CrossRef]
    [Google Scholar]
  120. Park SF, Kroll RG. Expression of listeriolysin and phosphatidylinositol-specific phospholipase C is repressed by the plant-derived molecule cellobiose in Listeria monocytogenes. Mol Microbiol 1993;8:653–661 [CrossRef]
    [Google Scholar]
  121. Milenbachs AA, Brown DP, Moors M, Youngman P. Carbon-source regulation of virulence gene expression in Listeria monocytogenes. Mol Microbiol 1997;23:1075–1085 [CrossRef]
    [Google Scholar]
  122. Stoll R, Mertins S, Joseph B, Müller-Altrock S, Goebel W. Modulation of PrfA activity in Listeria monocytogenes upon growth in different culture media. Microbiology 2008;154:3856–3876 [CrossRef]
    [Google Scholar]
  123. Chico-Calero I, Suárez M, González-Zorn B, Scortti M, Slaghuis J et al. Hpt, a bacterial homolog of the microsomal glucose- 6-phosphate translocase, mediates rapid intracellular proliferation in Listeria. Proc Natl Acad Sci U S A 2002;99:431–436 [CrossRef]
    [Google Scholar]
  124. Joseph B, Przybilla K, Stühler C, Schauer K, Slaghuis J et al. Identification of Listeria monocytogenes genes contributing to intracellular replication by expression profiling and mutant screening. J Bacteriol 2006;188:556–568 [CrossRef]
    [Google Scholar]
  125. Desbois AP, Smith VJ. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol 2010;85:1629–1642 [CrossRef]
    [Google Scholar]
  126. Chatterjee A, Dutta PK, Chowdhury R. Effect of fatty acids and cholesterol present in bile on expression of virulence factors and motility of Vibrio cholerae. Infect Immun 2007;75:1946–1953 [CrossRef]
    [Google Scholar]
  127. Golubeva YA, Ellermeier JR, Cott Chubiz JE, Slauch JM. Intestinal long-chain fatty acids act as a direct signal to modulate expression of the Salmonella Pathogenicity Island 1 type III secretion system. MBio 2016;7:e02170–15 [CrossRef]
    [Google Scholar]
  128. Lowden MJ, Skorupski K, Pellegrini M, Chiorazzo MG, Taylor RK et al. Structure of Vibrio cholerae ToxT reveals a mechanism for fatty acid regulation of virulence genes. Proc Natl Acad Sci U S A 2010;107:2860–2865 [CrossRef]
    [Google Scholar]
  129. Plecha SC, Withey JH. Mechanism for inhibition of Vibrio cholerae toxT activity by the unsaturated fatty acid components of bile. J Bacteriol 2015;197:1716–1725 [CrossRef]
    [Google Scholar]
  130. Childers BM, Cao X, Weber GG, Demeler B, Hart PJ et al. N-terminal residues of the Vibrio cholerae virulence regulatory protein ToxT involved in dimerization and modulation by fatty acids. J. Biol. Chem. 2011;286:28644–28655 [CrossRef]
    [Google Scholar]
  131. Sun Y, Wilkinson BJ, Standiford TJ, Akinbi HT, O'Riordan MXD. Fatty acids regulate stress resistance and virulence factor production for Listeria monocytogenes. J Bacteriol 2012;194:5274–5284 [CrossRef]
    [Google Scholar]
  132. Sternkopf Lillebæk EM, Lambert Nielsen S, Scheel Thomasen R, Færgeman NJ, Kallipolitis BH. Antimicrobial medium- and long-chain free fatty acids prevent PrfA-dependent activation of virulence genes in Listeria monocytogenes. Res Microbiol 2017;168:547–557 [CrossRef]
    [Google Scholar]
  133. Bruno JC, Freitag NE. Listeria monocytogenes adapts to long-term stationary phase survival without compromising bacterial virulence. FEMS Microbiol Lett 2011;323:171–179 [CrossRef]
    [Google Scholar]
  134. Maury MM, Chenal-Francisque V, Bracq-Dieye H, Han L, Leclercq A et al. Spontaneous loss of virulence in natural populations of Listeria monocytogenes. Infect Immun 2017;85:00541–17 [CrossRef]
    [Google Scholar]
  135. Guldimann C, Guariglia-Oropeza V, Harrand S, Kent D, Boor KJ et al. Stochastic and differential activation of σB and PrfA in Listeria monocytogenes at the single cell level under different environmental stress conditions. Front Microbiol 2017;8:348 [CrossRef]
    [Google Scholar]
  136. Lemon KP, Freitag NE, Kolter R. The virulence regulator PrfA promotes biofilm formation by Listeria monocytogenes. J Bacteriol 2010;192:3969–3976 [CrossRef]
    [Google Scholar]
  137. Travier L, Guadagnini S, Gouin E, Dufour A, Chenal-Francisque V et al. ActA promotes Listeria monocytogenes aggregation, intestinal colonization and carriage. PLoS Pathog 2013;9:e1003131 [CrossRef]
    [Google Scholar]
  138. Shen, Higgins DE. The 5' untranslated region-mediated enhancement of intracellular listeriolysin O production is required for Listeria monocytogenes pathogenicity. Mol Microbiol 2005;57:1460–1473 [CrossRef]
    [Google Scholar]
  139. Stritzker J, Schoen C, Goebel W. Enhanced synthesis of internalin A in aro mutants of Listeria monocytogenes indicates posttranscriptional control of the inlAB mRNA. J Bacteriol 2005;187:2836–2845 [CrossRef]
    [Google Scholar]
  140. Wong KKY, Bouwer HGA, Freitag NE. Evidence implicating the 5' untranslated region of Listeria monocytogenes actA in the regulation of bacterial actin-based motility. Cell Microbiol 2004;6:155–166 [CrossRef]
    [Google Scholar]
  141. Mollerup MS, Ross JA, Helfer A-C, Meistrup K, Romby P et al. Two novel members of the LhrC family of small RNAs in Listeria monocytogenes with overlapping regulatory functions but distinctive expression profiles. RNA Biol 2016;13:895–915 [CrossRef]
    [Google Scholar]
  142. Nielsen JS, Olsen AS, Bonde M, Valentin-Hansen P, Kallipolitis BH. Identification of a sigma B-dependent small noncoding RNA in Listeria monocytogenes. J Bacteriol 2008;190:6264–6270 [CrossRef]
    [Google Scholar]
  143. Mraheil MA, Billion A, Mohamed W, Mukherjee K, Kuenne C et al. The intracellular sRNA transcriptome of Listeria monocytogenes during growth in macrophages. Nucleic Acids Res 2011;39:4235–4248 [CrossRef]
    [Google Scholar]
  144. Quereda JJ, Ortega AD, Pucciarelli MG, García-Del Portillo F. The Listeria small RNA Rli27 regulates a cell wall protein inside eukaryotic cells by targeting a long 5'-UTR variant. PLoS Genet 2014;10:e1004765 [CrossRef]
    [Google Scholar]
  145. Dos Santos PT, Menendez-Gil P, Sabharwal D, Christensen J-H, Brunhede MZ et al. The small regulatory RNAs LhrC1-5 contribute to the response of Listeria monocytogenes to heme toxicity. Front Microbiol 2018;9:599 [CrossRef]
    [Google Scholar]
  146. Sievers S, Sternkopf Lillebæk EM, Jacobsen K, Lund A, Mollerup MS et al. A multicopy sRNA of Listeria monocytogenes regulates expression of the virulence adhesin LapB. Nucleic Acids Res 2014;42:9383–9398 [CrossRef]
    [Google Scholar]
  147. Sievers S, Lund A, Menendez-Gil P, Nielsen A, Storm Mollerup M et al. The multicopy sRNA LhrC controls expression of the oligopeptide-binding protein OppA in Listeria monocytogenes. RNA Biol 2015;12:985–997 [CrossRef]
    [Google Scholar]
  148. Reis O, Sousa S, Camejo A, Villiers V, Gouin E et al. LapB, a novel Listeria monocytogenes LPXTG surface adhesin, required for entry into eukaryotic cells and virulence. J Infect Dis 2010;202:551–562 [CrossRef]
    [Google Scholar]
  149. Stock AM, Robinson VL, Goudreau PN. Two-component signal transduction. Annu Rev Biochem 2000;69:183–215 [CrossRef]
    [Google Scholar]
  150. Zschiedrich CP, Keidel V, Szurmant H. Molecular mechanisms of two-component signal transduction. J Mol Biol 2016;428:3752–3775 [CrossRef]
    [Google Scholar]
  151. Glaser P, Frangeul L, Buchrieser C, Rusniok C, Amend A et al. Comparative genomics of Listeria species. Science 2001;294:849–852 [CrossRef]
    [Google Scholar]
  152. Autret N, Raynaud C, Dubail I, Berche P, Charbit A. Identification of the agr locus of Listeria monocytogenes: role in bacterial virulence. Infect Immun 2003;71:4463–4471 [CrossRef]
    [Google Scholar]
  153. Cotter PD, Emerson N, Gahan CG, Hill C. Identification and disruption of lisRK, a genetic locus encoding a two-component signal transduction system involved in stress tolerance and virulence in Listeria monocytogenes. J Bacteriol 1999;181:6840–6843
    [Google Scholar]
  154. Dons L, Eriksson E, Jin Y, Rottenberg ME, Kristensson K et al. Role of flagellin and the two-component CheA/CheY system of Listeria monocytogenes in host cell invasion and virulence. Infect Immun 2004;72:3237–3244 [CrossRef]
    [Google Scholar]
  155. Mandin P, Fsihi H, Dussurget O, Vergassola M, Milohanic E et al. VirR, a response regulator critical for Listeria monocytogenes virulence. Mol Microbiol 2005;57:1367–1380 [CrossRef]
    [Google Scholar]
  156. Novick RP, Ross HF, Projan SJ, Kornblum J, Kreiswirth B et al. Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. EMBO J 1993;12:3967–3975 [CrossRef]
    [Google Scholar]
  157. Zetzmann M, Sánchez-Kopper A, Waidmann MS, Blombach B, Riedel CU. Identification of the agr peptide of Listeria monocytogenes. Front Microbiol 2016;7:989 [CrossRef]
    [Google Scholar]
  158. Riedel CU, Monk IR, Casey PG, Waidmann MS, Gahan CGM et al. AgrD-dependent quorum sensing affects biofilm formation, invasion, virulence and global gene expression profiles in Listeria monocytogenes. Mol Microbiol 2009;71:1177–1189 [CrossRef]
    [Google Scholar]
  159. Rieu A, Briandet R, Habimana O, Garmyn D, Guzzo J et al. Listeria monocytogenes EGD-e biofilms: no mushrooms but a network of knitted chains. Appl Environ Microbiol 2008;74:4491–4497 [CrossRef]
    [Google Scholar]
  160. Rieu A, Weidmann S, Garmyn D, Piveteau P, Guzzo J. Agr system of Listeria monocytogenes EGD-e: role in adherence and differential expression pattern. Appl Environ Microbiol 2007;73:6125–6133 [CrossRef]
    [Google Scholar]
  161. Williams T, Bauer S, Beier D, Kuhn M. Construction and characterization of Listeria monocytogenes mutants with in-frame deletions in the response regulator genes identified in the genome sequence. Infect Immun 2005;73:3152–3159 [CrossRef]
    [Google Scholar]
  162. Cotter PD, Guinane CM, Hill C. The LisRK signal transduction system determines the sensitivity of Listeria monocytogenes to nisin and cephalosporins. Antimicrob Agents Chemother 2002;46:2784–2790 [CrossRef]
    [Google Scholar]
  163. Stack HM, Sleator RD, Bowers M, Hill C, Gahan CGM. Role for HtrA in stress induction and virulence potential in Listeria monocytogenes. Appl Environ Microbiol 2005;71:4241–4247 [CrossRef]
    [Google Scholar]
  164. Dons L, Olsen JE, Rasmussen OF. Characterization of two putative Listeria monocytogenes genes encoding polypeptides homologous to the sensor protein CheA and the response regulator CheY of chemotaxis. DNA Seq 1994;4:301–311 [CrossRef]
    [Google Scholar]
  165. Kang J, Wiedmann M, Boor KJ, Bergholz TM. VirR-mediated resistance of Listeria monocytogenes against food antimicrobials and cross-protection induced by exposure to organic acid salts. Appl Environ Microbiol 2015;81:4553–4562 [CrossRef]
    [Google Scholar]
  166. Grubaugh D, Regeimbal JM, Ghosh P, Zhou Y, Lauer P et al. The VirAB ABC transporter is required for VirR regulation of Listeria monocytogenes virulence and resistance to nisin. Infect Immun 2018;86:e00901–00917 [CrossRef]
    [Google Scholar]
  167. Gueriri I, Bay S, Dubrac S, Cyncynatus C, Msadek T. The Pta-AckA pathway controlling acetyl phosphate levels and the phosphorylation state of the DegU orphan response regulator both play a role in regulating Listeria monocytogenes motility and chemotaxis. Mol Microbiol 2008;70:1342–1357 [CrossRef]
    [Google Scholar]
  168. Kamp HD, Higgins DE. Transcriptional and post-transcriptional regulation of the GmaR antirepressor governs temperature-dependent control of flagellar motility in Listeria monocytogenes. Mol Microbiol 2009;74:421–435 [CrossRef]
    [Google Scholar]
  169. Mauder N, Williams T, Fritsch F, Kuhn M, Beier D. Response regulator DegU of Listeria monocytogenes controls temperature-responsive flagellar gene expression in its unphosphorylated state. J Bacteriol 2008;190:4777–4781 [CrossRef]
    [Google Scholar]
  170. Shen A, Higgins DE. The MogR transcriptional repressor regulates nonhierarchal expression of flagellar motility genes and virulence in Listeria monocytogenes. PLoS Pathog 2006;2:e30 [CrossRef]
    [Google Scholar]
  171. Williams T, Joseph B, Beier D, Goebel W, Kuhn M. Response regulator DegU of Listeria monocytogenes regulates the expression of flagella-specific genes. FEMS Microbiol Lett 2005;252:287–298 [CrossRef]
    [Google Scholar]
  172. Gueriri I, Cyncynatus C, Dubrac S, Arana AT, Dussurget O et al. The DegU orphan response regulator of Listeria monocytogenes autorepresses its own synthesis and is required for bacterial motility, virulence and biofilm formation. Microbiology 2008;154:2251–2264 [CrossRef]
    [Google Scholar]
  173. Knudsen GM, Olsen JE, Dons L. Characterization of degu, a response regulator in Listeria monocytogenes, involved in regulation of motility and contributes to virulence. FEMS Microbiol Lett 2004;240:171–179 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000808
Loading
/content/journal/micro/10.1099/mic.0.000808
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error