1887

Abstract

Rhizobium tropici CIAT 899 is a facultative symbiotic diazotroph able to deal with stressful concentrations of metals. Nevertheless the molecular mechanisms involved in metal tolerance have not been elucidated. Copper (Cu) is a metal component essential for the heme-copper respiratory oxidases and enzymes that catalyse redox reactions, however, it is highly toxic when intracellular trace concentrations are surpassed. In this study, we report that R. tropici CIAT 899 is more tolerant to Cu than other Rhizobium and Sinorhizobium species. Through Tn5 random mutagenesis we identify a R. tropici mutant strain with a severe reduction in Cu tolerance. The Tn5 insertion disrupted the gene RTCIAT899_CH17575, encoding a putative heavy metal efflux P1B-1-type ATPase designated as copA. Phaseolus vulgaris plants inoculated with the copA::Tn5 mutant in the presence of toxic Cu concentrations showed a drastic reduction in plant and nodule dry weight, as well as nitrogenase activity. Nodules induced by the copA::Tn5 mutant present an increase in H2O2 concentration, lipoperoxidation and accumulate 40-fold more Cu than nodules formed by the wild-type strain. The copA::Tn5 mutant complemented with the copA gene recovered the wild-type symbiotic phenotypes. Therefore, the copA gene is essential for R. tropici CIAT 899 to survive in copper-rich environments in both free life and symbiosis with P. vulgaris plants.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000803
2019-05-14
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/165/6/651.html?itemId=/content/journal/micro/10.1099/mic.0.000803&mimeType=html&fmt=ahah

References

  1. Macomber L, Imlay JA. The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc Natl Acad Sci U S A 2009; 106:8344–8349 [View Article]
    [Google Scholar]
  2. Argüello JM, Raimunda D, Padilla-Benavides T. Mechanisms of copper homeostasis in bacteria. Front Cell Infect Microbiol 2013; 3:73 [View Article]
    [Google Scholar]
  3. Argüello JM, Eren E, González-Guerrero M. The structure and function of heavy metal transport P1B-ATPases. Biometals 2007; 20:233–248 [View Article]
    [Google Scholar]
  4. Zhang X-X, Rainey PB. The role of a P1-type ATPase from Pseudomonas fluorescens SBW25 in copper homeostasis and plant colonization. Mol Plant Microbe Interact 2007; 20:581–588 [View Article]
    [Google Scholar]
  5. Patel SJ, Padilla-Benavides T, Collins JM, Argüello JM. Functional diversity of five homologous Cu+-ATPases present in Sinorhizobium meliloti. Microbiology 2014; 160:1237–1251 [View Article]
    [Google Scholar]
  6. González-Guerrero M, Escudero V, Saéz Ángela, Tejada-Jiménez M. Transition metal transport in plants and associated endosymbionts: arbuscular mycorrhizal fungi and rhizobia. Front Plant Sci 2016; 7:1088 [View Article]
    [Google Scholar]
  7. Yruela I. Copper in plants. Braz J Plant Physiol. 2005; 17:145–156 [View Article]
    [Google Scholar]
  8. Cuypers A, Smeets K, Ruytinx J, Opdenakker K, Keunen E, Karen S, Jos R, Kelly O, Els K et al. The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings. J Plant Physiol 2011; 168:309–316 [View Article]
    [Google Scholar]
  9. Emamverdian A, Ding Y, Mokhberdoran F, Xie Y. Heavy metal stress and some mechanisms of plant defense response. Sci World J 201518 [View Article]
    [Google Scholar]
  10. Ann C, Vangronsveld J, Clijsters H. Peroxidases in roots and primary leaves of Phaseolus vulgaris copper and zinc phytotoxicity: a comparison. J Plant Physiol 2002; 159:869–876
    [Google Scholar]
  11. Schützendübel A, Polle A. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 2002; 53:1351–1365 [View Article]
    [Google Scholar]
  12. Chang C, Damiani I, Puppo A, Frendo P. Redox changes during the legume-rhizobium symbiosis. Mol Plant 2009; 2:370–377 [View Article]
    [Google Scholar]
  13. Das K, Roychoudhury A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2014; 2: [View Article]
    [Google Scholar]
  14. Naya L, Paul S, Valdés-López O, Mendoza-Soto AB, Nova-Franco B et al. Regulation of copper homeostasis and biotic interactions by microRNA 398b in common bean. PLoS One 2014; 9:e84416 [View Article]
    [Google Scholar]
  15. Broos K, Uyttebroek M, Mertens J, Smolders E. A survey of symbiotic nitrogen fixation by white clover grown on metal contaminated soils. Soil Biol Biochem 2004; 36:633–640 [View Article]
    [Google Scholar]
  16. Wani PA, Khan MS, Zaidi A, Cadmium ZA. Cadmium, chromium and copper in greengram plants. Agron Sustain Dev 2007; 27:145–153 [View Article]
    [Google Scholar]
  17. Wani PA, Khan MS, Zaidi A. Effects of heavy metal toxicity on growth, symbiosis, seed yield and metal uptake in pea grown in metal amended soil. Bull Environ Contam Toxicol 2008; 81:152–158 [View Article]
    [Google Scholar]
  18. Hernandez-Lucas I, Segovia L, Martinez-Romero E, Pueppke SG. Phylogenetic relationships and host range of Rhizobium spp. that nodulate Phaseolus vulgaris L. Appl Environ Microbiol 1995; 61:2775–2779
    [Google Scholar]
  19. Hungria M, Campo RJ, Mendes IdC, Campo RJ, IdC M. Benefits of inoculation of the common bean ( Phaseolus vulgaris ) crop with efficient and competitive Rhizobium tropici strains. Biol Fertil Soils 2003; 39:88–93 [View Article]
    [Google Scholar]
  20. Martínez-Romero E, Segovia L, Mercante FM, Franco AA, Graham P et al. Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int J Syst Evol Microbiol 1991; 41:417–426
    [Google Scholar]
  21. Ormeño-Orrillo E, Rosenblueth M, Luyten E, Vanderleyden J, Martínez-Romero E. Mutations in lipopolysaccharide biosynthetic genes impair maize rhizosphere and root colonization of Rhizobium tropici CIAT899. Environ Microbiol 2008; 10:1271–1284 [View Article]
    [Google Scholar]
  22. Preisig O, Zufferey R, Thöny-Meyer L, Appleby CA, Hennecke H. A high-affinity cbb3-type cytochrome oxidase terminates the symbiosis-specific respiratory chain of Bradyrhizobium japonicum. J Bacteriol 1996; 178:1532–1538 [View Article]
    [Google Scholar]
  23. Noel KD, Sanchez A, Fernandez L, Leemans J, Cevallos MA. Rhizobium phaseoli symbiotic mutants with transposon Tn5 insertions. J Bacteriol 1984; 158:148–155
    [Google Scholar]
  24. Todar K. Growth of bacterial populations. In Bacteriology Do. editor Todar's Online Textbook of Bacteriology Madison, Wisconsin: University of Wisconsin; 2012 p 3
    [Google Scholar]
  25. Evans GA. Molecular cloning: a laboratory manual. Second edition. Volumes 1, 2, and 3. current protocols in molecular biology. Volumes 1 and 2. Cell 1990; 61:17–18 [View Article]
    [Google Scholar]
  26. Dombrecht B, Vanderleyden J, Michiels J. Stable RK2-derived cloning vectors for the analysis of gene expression and gene function in gram-negative bacteria. Mol Plant Microbe Interact 2001; 14:426–430 [View Article]
    [Google Scholar]
  27. Girard L, Brom S, Dávalos A, López O, Soberón M et al. Differential regulation of fixN-reiterated genes in Rhizobium etli by a novel fixL-fixK cascade. Mol Plant Microbe Interact 2000; 13:1283–1292 [View Article]
    [Google Scholar]
  28. Hernández VM, Girard L, Hernández-Lucas I, Vázquez A, Ortíz-Ortíz C et al. Genetic and biochemical characterization of arginine biosynthesis in Sinorhizobium meliloti 1021. Microbiology 2015; 161:1671–1682 [View Article]
    [Google Scholar]
  29. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72:248–254 [View Article]
    [Google Scholar]
  30. Valdés-López O, Yang SS, Aparicio-Fabre R, Graham PH, Reyes JL et al. MicroRNA expression profile in common bean (Phaseolus vulgaris) under nutrient deficiency stresses and manganese toxicity. New Phytol 2010; 187:805–818 [View Article]
    [Google Scholar]
  31. Franco AA, Munns DN. Nodulation and growth ofPhaseolus vulgaris in solution culture. Plant Soil 1982; 66:149–160 [View Article]
    [Google Scholar]
  32. Hardy RW, Holsten RD, Jackson EK, Burns RC. The acetylene-ethylene assay for n(2) fixation: laboratory and field evaluation. Plant Physiol 1968; 43:1185–1207 [View Article]
    [Google Scholar]
  33. Haynes JG, Czymmek KJ, Carlson CA, Veereshlingam H, Dickstein R et al. Rapid analysis of legume root nodule development using confocal microscopy. New Phytol 2004; 163:661–668 [View Article]
    [Google Scholar]
  34. Jones DL, Blancaflor EB, Kochian LV, Gilroy S. Spatial coordination of aluminium uptake, production of reactive oxygen species, callose production and wall rigidification in maize roots. Plant Cell Environ 2006; 29:1309–1318 [View Article]
    [Google Scholar]
  35. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M et al. Fiji: an open-source platform for biological-image analysis. Nat Methods 2012; 9:676–682 [View Article]
    [Google Scholar]
  36. Heath RL, Packer L. Photoperoxidation in isolated chloroplasts. Arch Biochem Biophys 1968; 125:189–198 [View Article]
    [Google Scholar]
  37. Du Z, Bramlage WJ. Modified thiobarbituric acid assay for measuring lipid oxidation in sugar-rich plant tissue extracts. J Agric Food Chem 1992; 40:1566–1570 [View Article]
    [Google Scholar]
  38. García-García JD, Peña-Sanabria KA, Sánchez-Thomas R, Moreno-Sánchez R. Nickel accumulation by the green algae-like Euglena gracilis. J Hazard Mater 2018; 343:10–18 [View Article]
    [Google Scholar]
  39. Young JM, Kuykendall LD, Martínez-Romero E, Kerr A, Sawada H. A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. Vitis. Int J Syst Evol Microbiol 2001; 51:89–103 [View Article]
    [Google Scholar]
  40. Egler M, Grosse C, Grass G, Nies DH. Role of the extracytoplasmic function protein family sigma factor RpoE in metal resistance of Escherichia coli. J Bacteriol 2005; 187:2297–2307 [View Article]
    [Google Scholar]
  41. Gudipaty SA, Larsen AS, Rensing C, McEvoy MM. Regulation of Cu(I)/Ag(I) efflux genes in Escherichia coli by the sensor kinase CusS. FEMS Microbiol Lett 2012; 330:30–37 [View Article]
    [Google Scholar]
  42. Vita N, Landolfi G, Baslé A, Platsaki S, Lee J et al. Bacterial cytosolic proteins with a high capacity for Cu(I) that protect against copper toxicity. Sci Rep 2016; 6:39065 [View Article]
    [Google Scholar]
  43. González-Sánchez A, Cubillas CA, Miranda F, Dávalos A, García-de Los Santos A. The ropAe gene encodes a porin-like protein involved in copper transit in Rhizobium etli CFN42. Microbiologyopen 2018; 7:e00573 [View Article]
    [Google Scholar]
  44. O'Brian MR, Kirshbom PM, Maier RJ. Bacterial heme synthesis is required for expression of the leghemoglobin holoprotein but not the apoprotein in soybean root nodules. Proc Natl Acad Sci U S A 1987; 84:8390–8393 [View Article]
    [Google Scholar]
  45. Singh S, Varma A, Choudhary DK, Agrawal PK, Varma A. Structure, function, and estimation of leghemoglobin. In Hansen AP, Choudhary DK, Agrawal PK, Varma A. (editors) Rhizobium Biology and Biotechnology Cham: Springer International Publishing; 2017 pp 309–330
    [Google Scholar]
  46. Tripathy BC, Oelmüller R. Reactive oxygen species generation and signaling in plants. Plant Signal Behav 2012; 7:1621–1633 [View Article]
    [Google Scholar]
  47. Cabiscol E, Tamarit J, Ros J. Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol 2000; 3:3–8
    [Google Scholar]
  48. Peres²* AR, Rodrigues³ RAF, Arf O, Portugal JR, Corsini DCDC. Co-inoculation of Rhizobium tropici and Azospirillum brasilense in common beans grown under two irrigation depths. Revista Ceres 2016; 63:198–207 [View Article]
    [Google Scholar]
  49. Ormeño-Orrillo E, Menna P, Almeida LGP, Ollero FJ, Nicolás MF et al. Genomic basis of broad host range and environmental adaptability of Rhizobium tropici CIAT 899 and Rhizobium sp. PRF 81 which are used in inoculants for common bean (Phaseolus vulgaris L.). BMC Genomics 2012; 13:735–735 [View Article]
    [Google Scholar]
  50. Banci L, Bertini I, McGreevy KS, Rosato A. Molecular recognition in copper trafficking. Nat Prod Rep 2010; 27:695–710 [View Article]
    [Google Scholar]
  51. Rademacher C, Masepohl B. Copper-responsive gene regulation in bacteria. Microbiology 2012; 158:2451–2464 [View Article]
    [Google Scholar]
  52. Cubillas C, Miranda-Sánchez F, González-Sánchez A, Elizalde JP, Vinuesa P et al. A comprehensive phylogenetic analysis of copper transporting P 1B ATPases from bacteria of the Rhizobiales order uncovers multiplicity, diversity and novel taxonomic subtypes. Microbiologyopen 2017; 6:e00452 [View Article]
    [Google Scholar]
  53. Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001; 305:567–580 [View Article]
    [Google Scholar]
  54. Nawapan S, Charoenlap N, Charoenwuttitam A, Saenkham P, Mongkolsuk S et al. Functional and expression analyses of the cop operon, required for copper resistance in Agrobacterium tumefaciens. J Bacteriol 2009; 191:5159–5168 [View Article]
    [Google Scholar]
  55. Landeta C, Dávalos A, Cevallos Miguel Ángel, Geiger O, Brom S et al. Plasmids with a chromosome-like role in Rhizobia. J Bacteriol 2011; 193:1317–1326 [View Article]
    [Google Scholar]
  56. Reeve WG, Tiwari RP, Kale NB, Dilworth MJ, Glenn AR. ActP controls copper homeostasis in Rhizobium leguminosarum bv. viciae and Sinorhizobium meliloti preventing low pH-induced copper toxicity. Mol Microbiol 2002; 43:981–991 [View Article]
    [Google Scholar]
  57. Hao X, Xie P, Zhu Y-G, Taghavi S, Wei G et al. Copper tolerance mechanisms of Mesorhizobium amorphae and its role in Aiding phytostabilization by Robinia pseudoacacia in copper contaminated soil. Environ Sci Technol 2015; 49:2328–2340 [View Article]
    [Google Scholar]
  58. Burns RC. The nitrogenase system from Azotobacter Activation energy and divalent cation requirement. Biochimica et Biophysica Acta (BBA) - Enzymology 1969; 171:253–259 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000803
Loading
/content/journal/micro/10.1099/mic.0.000803
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error