1887

Abstract

The suite of GreenCut proteins, initially assembled in 2007 and updated in 2011 (GreenCut2), comprises 597 Chlamydomonas reinhardtii proteins; these proteins, identified as putative orthologues in all green lineage organisms examined, but not (or poorly conserved) in non-photosynthetic organisms, are potentially enriched for proteins affiliated with photosynthesis. The annotation of GreenCut2 proteins and the characterization of mutants with lesions in genes encoding those proteins identified catalytic components of the photosynthetic apparatus that were previously uncharacterized, as well as polypeptides likely associated with chloroplast biogenesis and potential regulatory factors and activities that link environmental conditions to dynamic control of photosynthetic activities. Analyses of strains devoid of specific GreenCut2 proteins are being aided by a genome-wide library of mutants for which the lesions are mapped, indexed and readily available to the community (https://www.chlamylibrary.org/). In this review we briefly include some milestones in the history of photosynthesis, explain the way in which the GreenCut protein assemblage was generated and describe potential functions of individual member proteins, especially those linked to photosynthesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000788
2019-05-07
2019-08-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/165/7/697.html?itemId=/content/journal/micro/10.1099/mic.0.000788&mimeType=html&fmt=ahah

References

  1. Govindjee, Krogmann D. Discoveries in oxygenic photosynthesis (1727-2003): a perspective. Photosynth Res 2004;80:15–57 [CrossRef][PubMed]
    [Google Scholar]
  2. Ingenhousz J. Experiments Upon Vegetables, Discovering Their Great Power of Purifying Thecommon Air in the Sun-Shine and of Injuring It in the Shade and at Night London; 1779; pp.xiii–0
    [Google Scholar]
  3. von Mohl H. Ueber die Vermehrung der Pflanzen-Zellen durch Teilung. Dissert Tubingen1835 Flora 1837 1835/1837
    [Google Scholar]
  4. Mayer JR. Die organische Bewegung in ihrem Zussamenhag mit dem Stoffwechsel: Ein Beitrag zur Naturkunde Heilbronn: Verlag der C Drechsler’schen Buchhandlung; 1845
    [Google Scholar]
  5. Boussingault JB. De la végétation dans l'obscurité. Ann Sci Nat 1864;1:314–324 Paris
    [Google Scholar]
  6. Engelmann TW. Über Sauerstoffausscheidung von Pflanzenzellen im Mikrospectrum. Bot Z 1882;40:419–426
    [Google Scholar]
  7. Schimper AFW. Über die entwicklung der chlorophyllkörner und farbkörper. Bot Zeitung 1883;4131:10553–11462
    [Google Scholar]
  8. Strasburger E. Das botanische Praktikum, 1. Aufl Jena: Gustav Fischer; 1884
    [Google Scholar]
  9. Tswett M. Absorption analyse und chromatographische methode. Anwendung auf die Chemie des Chlorophylls. Ber Deut Bot Ges 1906;24:384–393
    [Google Scholar]
  10. Warburg O, Negelein E. Über den Energieumsatz bei der Kohlensäureassimilation. Zeit Physikal Chem 1922;102:235–266
    [Google Scholar]
  11. Niel CB. On the morphology and physiology of the purple and green sulphur bacteria. Arch Mikrobiol 1931;3:1–12
    [Google Scholar]
  12. Hill R. Oxygen evolved by isolated chloroplasts. Nature 1937;139:881–882 [CrossRef]
    [Google Scholar]
  13. Hill R. Oxygen production by isolated chloroplasts. Proc R Soc London Ser J 1939;127:192–210
    [Google Scholar]
  14. Calvin M, Bassham JA, Benson AA. Chemical transformations of carbon in photosynthesis. Fed Proc 1950;9:524–534[PubMed]
    [Google Scholar]
  15. Burk D, Warburg O. Ein-Quanten-Reaktion und Kreisprozeß der Energie bei der Photosynthese. Z Naturforsch 1951;6b:12
    [Google Scholar]
  16. Frenkel A. Light induced phosphorylation by cell-free preparations of photosynthetic bacteria. J Am Chem Soc 1954;76:5568–5569 [CrossRef]
    [Google Scholar]
  17. Arnon DI, Allen MB, Whatley FR. Photosynthesis by isolated chloroplasts. Nature 1954;174:394–396 [CrossRef][PubMed]
    [Google Scholar]
  18. Arnon DI, Whatley FR, Allen MB. Photosynthesis by isolated chloroplasts. II. Photosynthetic phosphorylation, the conversion of light into phosphate bond energy. J Am Chem Soc 1954;76:6324–6329 [CrossRef]
    [Google Scholar]
  19. Allen MB, Arnon DI, Capindale JB, Whatley FR, Durham LJ. Photosynthesis by isolated chloroplasts. III. Evidence for complete photosynthesis. J Am Chem Soc 1955;77:4149–4155 [CrossRef]
    [Google Scholar]
  20. Allen MB, Whatley FR, Arnon DI. Photosynthesis by isolated chloroplasts. VI. Rates of conversion of light into chemical energy in photosynthetic phosphorylation. Biochim Biophys Acta 1958;27:16–23[PubMed]
    [Google Scholar]
  21. Arnon DI, Whatley FR, Allen MB. Assimilatory Power in Photosynthesis: Photosynthetic phosphorylation by isolated chloroplasts is coupled with TPN reduction. Science 1958;127:1026–1034 [CrossRef][PubMed]
    [Google Scholar]
  22. Emerson R, Lewis CM. The dependence of the quantum yield of Chlorella photosynthesis onwavelength of light. Am J Bot 1943;30:165–178 [CrossRef]
    [Google Scholar]
  23. Emerson R, Chalmers R, Cederstrand C. Some factors influencing the long-wave limit ofphoto synthesis. Proc Natl Acad Sci USA 1957;43:133–143 [CrossRef][PubMed]
    [Google Scholar]
  24. Emerson R, Chalmers RV. Speculations concerning the function and phylogenetic significance of the accessory pigments in algae. Phycol Soc Am News Bull 1958;11:51–56
    [Google Scholar]
  25. Kok B. Light-induced absorption changes in photosynthetic organisms. II. A split-beam difference spectrophotometer. Plant Physiol 1959;34:184–192 [CrossRef][PubMed]
    [Google Scholar]
  26. Hill R, Bendall FAY. Function of the two cytochrome components in chloroplasts: a working hypothesis. Nature 1960;186:136–137 [CrossRef]
    [Google Scholar]
  27. Duysens LN, Amesz J, Kamp BM. Two photochemical systems in photosynthesis. Nature 1961;190:510–511 [CrossRef][PubMed]
    [Google Scholar]
  28. Duysens LNM, Amesz J. Function and identification of two photochemical systems in photosynthesis. Biochim Biophys Acta 1962;64:243–260 [CrossRef]
    [Google Scholar]
  29. Ris H, Plaut W. Ultrastructure of DNA-containing areas in the chloroplast of Chlamydomonas. J Cell Biol 1962;13:383–391 [CrossRef][PubMed]
    [Google Scholar]
  30. Tagawa K, Arnon DI. Ferredoxins as electron carriers in photosynthesis and in the biological production and consumption of hydrogen gas. Nature 1962;195:537–543 [CrossRef][PubMed]
    [Google Scholar]
  31. Mitchell P. Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation Cornwall, UK: Glynn Res, Bodmin; 1961
    [Google Scholar]
  32. Mitchell P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 1961;191:144–148 [CrossRef][PubMed]
    [Google Scholar]
  33. Jagendorf AT, Uribe E. ATP formation caused by acid-base transition of spinach chloroplasts. Proc Natl Acad Sci USA 1966;55:170–177 [CrossRef][PubMed]
    [Google Scholar]
  34. Sager R, Ishida MR. Chloroplast DNA in Chlamydomonas. Proc Natl Acad Sci USA 1963;50:725–730 [CrossRef][PubMed]
    [Google Scholar]
  35. Sager R. Genetic systems in Chlamydomonas. Science 1960;132:1459–1465 [CrossRef][PubMed]
    [Google Scholar]
  36. Ebersold WT, Levine RP, Levine EE, Olmsted MA. Linkage maps in Chlamydomonas reinhardi. Genetics 1962;47:531–543[PubMed]
    [Google Scholar]
  37. Levine RP. The mechanism of photosynthesis. Sci Am 1969;221:58–72 [CrossRef][PubMed]
    [Google Scholar]
  38. Eberhard S, Finazzi G, Wollman FA. The dynamics of photosynthesis. Annu Rev Genet 2008;42:463–515 [CrossRef][PubMed]
    [Google Scholar]
  39. Grossman AR, Karpowicz SJ, Heinnickel M, Dewez D, Hamel B et al. Phylogenomic analysis of the Chlamydomonas genome unmasks proteins potentially involved in photosynthetic function and regulation. Photosynth Res 2010;106:3–17 [CrossRef][PubMed]
    [Google Scholar]
  40. Li HM, Chiu CC. Protein transport into chloroplasts. Annu Rev Plant Biol 2010;61:157–180 [CrossRef][PubMed]
    [Google Scholar]
  41. Minagawa J. State transitions-the molecular remodeling of photosynthetic supercomplexes that controls energy flow in the chloroplast. Biochim Biophys Acta 2011;1807:897–905 [CrossRef][PubMed]
    [Google Scholar]
  42. Müller P, Li XP, Niyogi KK. Non-photochemical quenching. A response to excess light energy. Plant Physiol 2001;125:1558–1566 [CrossRef][PubMed]
    [Google Scholar]
  43. Nawrocki WJ, Tourasse NJ, Taly A, Rappaport F, Wollman FA. The plastid terminal oxidase: its elusive function points to multiple contributions to plastid physiology. Annu Rev Plant Biol 2015;66:49–74 [CrossRef][PubMed]
    [Google Scholar]
  44. Niyogi KK, Truong TB. Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. Curr Opin Plant Biol 2013;16:307–314 [CrossRef][PubMed]
    [Google Scholar]
  45. Wittkopp T, Saroussi S, Yang W, Grossman A. The GreenCut - functions and relationships of proteins conserved in green lineage organisms. In Kirchhoff H. (editor) Chloroplasts; Current Research and Applications Poole, UK: Caister Academic Press; 2016
    [Google Scholar]
  46. Wittkopp TM, Saroussi S, Yang W, Johnson X, Kim RG et al. GreenCut protein CPLD49 of Chlamydomonas reinhardtii associates with thylakoid membranes and is required for cytochrome b 6 f complex accumulation. Plant J 2018;94:1023–1037 [CrossRef][PubMed]
    [Google Scholar]
  47. Wollman FA. State transitions reveal the dynamics and flexibility of the photosynthetic apparatus. Embo J 2001;20:3623–3630 [CrossRef][PubMed]
    [Google Scholar]
  48. Wollman F-A, Minai L, Nechushtai R. The biogenesis and assembly of photosynthetic proteins in thylakoid membranes. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1999;1411:21–85 [CrossRef]
    [Google Scholar]
  49. Swiatek M, Kuras R, Sokolenko A, Higgs D, Olive J et al. The chloroplast gene ycf9 encodes a photosystem II (PSII) core subunit, PsbZ, that participates in PSII supramolecular architecture. Plant Cell 2001;13:1347–1368 [CrossRef][PubMed]
    [Google Scholar]
  50. Ramundo S, Rahire M, Schaad O, Rochaix JD. Repression of essential chloroplast genes reveals new signaling pathways and regulatory feedback loops in Chlamydomonas. Plant Cell 2013;25:167–186 [CrossRef][PubMed]
    [Google Scholar]
  51. Ramundo S, Rochaix JD. Controlling expression of genes in the unicellular alga Chlamydomonas reinhardtii with a vitamin-repressible riboswitch. Methods Enzymol 2015;550:267–281 [CrossRef][PubMed]
    [Google Scholar]
  52. Greiner A, Kelterborn S, Evers H, Kreimer G, Sizova I et al. Targeting of Photoreceptor Genes in Chlamydomonas reinhardtii via Zinc-Finger Nucleases and CRISPR/Cas9. Plant Cell 2017;29:2498–2518 [CrossRef]
    [Google Scholar]
  53. Baek K, Yu J, Jeong J, Sim SJ, Bae S et al. Photoautotrophic production of macular pigment in a Chlamydomonas reinhardtii strain generated by using DNA-free CRISPR-Cas9 RNP-mediated mutagenesis. Biotechnol Bioeng 2018;115:719–728 [CrossRef]
    [Google Scholar]
  54. Shin YS, Jeong J, Nguyen THT, Kim JYH, Jin E et al. Targeted knockout of phospholipase A2 to increase lipid productivity in Chlamydomonas reinhardtii for biodiesel production. Bioresour Technol 2019;271:368–374 [CrossRef]
    [Google Scholar]
  55. Archibald JM. Endosymbiosis and Eukaryotic Cell Evolution. Curr Biol 2015;25:R911–R921 [CrossRef][PubMed]
    [Google Scholar]
  56. Kim E, Archibald JM. Plastid evolution: gene transfer and the maintenance of 'stolen' organelles. BMC Biol 2010;8:73 [CrossRef]
    [Google Scholar]
  57. Mereschkowsky C. Theorie der zwei plasmaarten als grundlage der symbiogenesis, einer neuen lehre von der entstehung der organismen. Biol Centralbl 1910;30:353–367
    [Google Scholar]
  58. Gentil J, Hempel F, Moog D, Zauner S, Maier UG. Review: origin of complex algae by secondary endosymbiosis: a journey through time. Protoplasma 2017;254:1835–1843 [CrossRef]
    [Google Scholar]
  59. Ferro M, Brugière S, Salvi D, Seigneurin-Berny D, Court M et al. AT_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins. Mol Cell Proteomics 2010;9:1063–1084 [CrossRef][PubMed]
    [Google Scholar]
  60. Salvi D, Bournais S, Moyet L, Bouchnak I, Kuntz M et al. AT_CHLORO: the first step when looking for information about subplastidial localization of proteins. Methods Mol Biol 2018;1829:395–406 [CrossRef][PubMed]
    [Google Scholar]
  61. Daniell H, Lin CS, Yu M, Chang WJ. Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol 2016;17:134 [CrossRef][PubMed]
    [Google Scholar]
  62. Fujisawa T, Narikawa R, Maeda SI, Watanabe S, Kanesaki Y et al. CyanoBase: a large-scale update on its 20th anniversary. Nucleic Acids Res 2017;45:D551–D554 [CrossRef][PubMed]
    [Google Scholar]
  63. Blaby IK, Blaby-Haas CE, Tourasse N, Hom EF, Lopez D et al. The Chlamydomonas genome project: a decade on. Trends Plant Sci 2014;19:672–680 [CrossRef][PubMed]
    [Google Scholar]
  64. Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ et al. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 2007;318:245–250 [CrossRef][PubMed]
    [Google Scholar]
  65. Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D et al. The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 2004;306:79–86 [CrossRef][PubMed]
    [Google Scholar]
  66. Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 2008;456:239–244 [CrossRef][PubMed]
    [Google Scholar]
  67. Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 2000;408:796–1-3 [CrossRef][PubMed]
    [Google Scholar]
  68. Karpowicz SJ, Prochnik SE, Grossman AR, Merchant SS. The GreenCut2 resource, a phylogenomically derived inventory of proteins specific to the plant lineage. J Biol Chem 2011;286:21427–21439 [CrossRef][PubMed]
    [Google Scholar]
  69. Pombert JF, Blouin NA, Lane C, Boucias D, Keeling PJ. A lack of parasitic reduction in the obligate parasitic green alga Helicosporidium. PLoS Genet 2014;10:e1004355 [CrossRef][PubMed]
    [Google Scholar]
  70. Smith DR, Lee RW. A plastid without a genome: evidence from the nonphotosynthetic green algal genus Polytomella. Plant Physiol 2014;164:1812–1819 [CrossRef][PubMed]
    [Google Scholar]
  71. Su HJ, Barkman TJ, Hao W, Jones SS, Naumann J et al. Novel genetic code and record-setting AT-richness in the highly reduced plastid genome of the holoparasitic plant Balanophora. Proc Natl Acad Sci USA 2019;116:934–943 [CrossRef][PubMed]
    [Google Scholar]
  72. Hughey JR, Hommersand MH, Gabrielson PW, Miller KA, Fuller T. Analysis of the complete plastomes of three species of Membranoptera (Ceramiales, Rhodophyta) from Pacific North America. J Phycol 2017;53:32–43 [CrossRef][PubMed]
    [Google Scholar]
  73. Derelle E, Ferraz C, Rombauts S, Rouzé P, Worden AZ et al. Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Natl Acad Sci USA 2006;103:11647–11652 [CrossRef][PubMed]
    [Google Scholar]
  74. Chotewutmontri P, Holbrook K, Bruce BD. Plastid protein targeting: preprotein recognition and translocation. Int Rev Cell Mol Biol 2017;330:227–294 [CrossRef][PubMed]
    [Google Scholar]
  75. Armbruster U, Rühle T, Kreller R, Strotbek C, Zühlke J et al. The photosynthesis affected mutant68-like protein evolved from a PSII assembly factor to mediate assembly of the chloroplast NAD(P)H dehydrogenase complex in Arabidopsis. Plant Cell 2013;25:3926–3943 [CrossRef][PubMed]
    [Google Scholar]
  76. Armbruster U, Zühlke J, Rengstl B, Kreller R, Makarenko E et al. The Arabidopsis thylakoid protein PAM68 is required for efficient D1 biogenesis and photosystem II assembly. Plant Cell 2010;22:3439–3460 [CrossRef][PubMed]
    [Google Scholar]
  77. Dalcorso G, Pesaresi P, Masiero S, Aseeva E, Schünemann D et al. A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis. Cell 2008;132:273–285 [CrossRef][PubMed]
    [Google Scholar]
  78. Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 2013;41:D808–D815 [CrossRef][PubMed]
    [Google Scholar]
  79. Heinnickel ML, Alric J, Wittkopp T, Yang W, Catalanotti C et al. Novel thylakoid membrane GreenCut protein CPLD38 impacts accumulation of the cytochrome b6f complex and associated regulatory processes. J Biol Chem 2013;288:7024–7036 [CrossRef][PubMed]
    [Google Scholar]
  80. Tardif M, Atteia A, Specht M, Cogne G, Rolland N et al. PredAlgo: a new subcellular localization prediction tool dedicated to green algae. Mol Biol Evol 2012;29:3625–3639 [CrossRef][PubMed]
    [Google Scholar]
  81. Harrison PJ, Bugg TD. Enzymology of the carotenoid cleavage dioxygenases: reaction mechanisms, inhibition and biochemical roles. Arch Biochem Biophys 2014;544:105–111 [CrossRef][PubMed]
    [Google Scholar]
  82. Armbruster U, Labs M, Pribil M, Viola S, Xu W et al. Arabidopsis CURVATURE THYLAKOID1 proteins modify thylakoid architecture by inducing membrane curvature. Plant Cell 2013;25:2661–2678 [CrossRef][PubMed]
    [Google Scholar]
  83. Blankenship RE. Molecular Mechanisms of Photosynthesis Wiley-Blackwell; 2013
    [Google Scholar]
  84. Merchant S, Sawaya MR. The light reactions: a guide to recent acquisitions for the picture gallery. Plant Cell 2005;17:648–663 [CrossRef][PubMed]
    [Google Scholar]
  85. Schult K, Meierhoff K, Paradies S, Töller T, Wolff P et al. The nuclear-encoded factor HCF173 is involved in the initiation of translation of the psbA mRNA in Arabidopsis thaliana. Plant Cell 2007;19:1329–1346 [CrossRef][PubMed]
    [Google Scholar]
  86. Link S, Engelmann K, Meierhoff K, Westhoff P. The atypical short-chain dehydrogenases HCF173 and HCF244 are jointly involved in translational initiation of the psbA mRNA of Arabidopsis. Plant Physiol 2012;160:2202–2218 [CrossRef][PubMed]
    [Google Scholar]
  87. Wei L, Guo J, Ouyang M, Sun X, Ma J et al. LPA19, a Psb27 homolog in Arabidopsis thaliana, facilitates D1 protein precursor processing during PSII biogenesis. J Biol Chem 2010;285:21391–21398 [CrossRef][PubMed]
    [Google Scholar]
  88. Peng L, Ma J, Chi W, Guo J, Zhu S et al. LOW PSII ACCUMULATION1 is involved in efficient assembly of photosystem II in Arabidopsis thaliana. Plant Cell 2006;18:955–969 [CrossRef][PubMed]
    [Google Scholar]
  89. Schneider A, Steinberger I, Herdean A, Gandini C, Eisenhut M et al. The Evolutionarily Conserved Protein PHOTOSYNTHESIS AFFECTED MUTANT71 Is Required for Efficient Manganese Uptake at the Thylakoid Membrane in Arabidopsis. Plant Cell 2016;28:tpc.00812.2015 [CrossRef][PubMed]
    [Google Scholar]
  90. Xing J, Liu P, Zhao L, Huang F. Deletion of CGLD1 Impairs PSII and Increases Singlet Oxygen Tolerance of Green Alga Chlamydomonas reinhardtii. Front Plant Sci 2017;8: [CrossRef][PubMed]
    [Google Scholar]
  91. Karamoko M, Cline S, Redding K, Ruiz N, Hamel PP. Lumen Thiol Oxidoreductase1, a disulfide bond-forming catalyst, is required for the assembly of photosystem II in Arabidopsis. Plant Cell 2011;23:4462–4475 [CrossRef][PubMed]
    [Google Scholar]
  92. Calderon RH, García-Cerdán JG, Malnoë A, Cook R, Russell JJ et al. A conserved rubredoxin is necessary for photosystem II accumulation in diverse oxygenic photoautotrophs. J Biol Chem 2013;288:26688–26696 [CrossRef][PubMed]
    [Google Scholar]
  93. Fristedt R, Herdean A, Blaby-Haas CE, Mamedov F, Merchant SS et al. PHOTOSYSTEM II PROTEIN33, a protein conserved in the plastid lineage, is associated with the chloroplast thylakoid membrane and provides stability to photosystem II supercomplexes in Arabidopsis. Plant Physiol 2015;167:481–492 [CrossRef][PubMed]
    [Google Scholar]
  94. Ajjawi I, Lu Y, Savage LJ, Bell SM, Last RL. Large-scale reverse genetics in Arabidopsis: case studies from the Chloroplast 2010 Project. Plant Physiol 2010;152:529–540 [CrossRef][PubMed]
    [Google Scholar]
  95. Bhuiyan NH, Friso G, Poliakov A, Ponnala L, van Wijk KJ. MET1 is a thylakoid-associated TPR protein involved in photosystem II supercomplex formation and repair in Arabidopsis. Plant Cell 2015;27:262–285 [CrossRef][PubMed]
    [Google Scholar]
  96. Ishikawa A, Tanaka H, Kato C, Iwasaki Y, Asahi T. Molecular characterization of the ZKT gene encoding a protein with PDZ, K-Box, and TPR motifs in Arabidopsis. Biosci Biotechnol Biochem 2005;69:972–978 [CrossRef][PubMed]
    [Google Scholar]
  97. Muranaka LS, Rütgers M, Bujaldon S, Heublein A, Geimer S et al. TEF30 Interacts with photosystem II monomers and is involved in the repair of photodamaged photosystem II in Chlamydomonas reinhardtii. Plant Physiol 2016;170:821–840 [CrossRef][PubMed]
    [Google Scholar]
  98. Ishihara S, Takabayashi A, Ido K, Endo T, Ifuku K et al. Distinct functions for the two PsbP-like proteins PPL1 and PPL2 in the chloroplast thylakoid lumen of Arabidopsis. Plant Physiol 2007;145:668–679 [CrossRef][PubMed]
    [Google Scholar]
  99. Myouga F, Takahashi K, Tanaka R, Nagata N, Kiss AZ et al. Stable Accumulation of Photosystem II Requires ONE-HELIX PROTEIN1 (OHP1) of the Light Harvesting-Like Family. Plant Physiol 2018;176:2277–2291 [CrossRef][PubMed]
    [Google Scholar]
  100. Rochaix JD. Regulation and dynamics of the light-harvesting system. Annu Rev Plant Biol 2014;65:287–309 [CrossRef][PubMed]
    [Google Scholar]
  101. Klimmek F, Sjödin A, Noutsos C, Leister D, Jansson S. Abundantly and rarely expressed Lhc protein genes exhibit distinct regulation patterns in plants. Plant Physiol 2006;140:793–804 [CrossRef][PubMed]
    [Google Scholar]
  102. Kirst H, Garcia-Cerdan JG, Zurbriggen A, Ruehle T, Melis A. Truncated photosystem chlorophyll antenna size in the green microalga Chlamydomonas reinhardtii upon deletion of the TLA3-CpSRP43 gene. Plant Physiol 2012;160:2251–2260 [CrossRef][PubMed]
    [Google Scholar]
  103. Dall'Osto L, Bressan M, Bassi R. Biogenesis of light harvesting proteins. Biochim Biophys Acta 2015;1847:861–871 [CrossRef][PubMed]
    [Google Scholar]
  104. Stöckel J, Bennewitz S, Hein P, Oelmüller R. The evolutionarily conserved tetratrico peptide repeat protein pale yellow green7 is required for photosystem I accumulation in Arabidopsis and copurifies with the complex. Plant Physiol 2006;141:870–878 [CrossRef][PubMed]
    [Google Scholar]
  105. Boudreau E, Takahashi Y, Lemieux C, Turmel M, Rochaix JD. The chloroplast ycf3 and ycf4 open reading frames of Chlamydomonas reinhardtii are required for the accumulation of the photosystem I complex. Embo J 1997;16:6095–6104 [CrossRef][PubMed]
    [Google Scholar]
  106. Albus CA, Ruf S, Schöttler MA, Lein W, Kehr J et al. Y3IP1, a nucleus-encoded thylakoid protein, cooperates with the plastid-encoded Ycf3 protein in photosystem I assembly of tobacco and Arabidopsis. Plant Cell 2010;22:2838–2855 [CrossRef][PubMed]
    [Google Scholar]
  107. Liu J, Yang H, Lu Q, Wen X, Chen F et al. PsbP-domain protein1, a nuclear-encoded thylakoid lumenal protein, is essential for photosystem I assembly in Arabidopsis. Plant Cell 2012;24:4992–5006 [CrossRef][PubMed]
    [Google Scholar]
  108. Fristedt R, Williams-Carrier R, Merchant SS, Barkan A. A thylakoid membrane protein harboring a DnaJ-type zinc finger domain is required for photosystem I accumulation in plants. J Biol Chem 2014;289:30657–30667 [CrossRef][PubMed]
    [Google Scholar]
  109. Nellaepalli S, Ozawa SI, Kuroda H, Takahashi Y. The photosystem I assembly apparatus consisting of Ycf3-Y3IP1 and Ycf4 modules. Nat Commun 2018;9:2439 [CrossRef][PubMed]
    [Google Scholar]
  110. Kuras R, de Vitry C, Choquet Y, Girard-Bascou J, Culler D et al. Molecular genetic identification of a pathway for heme binding to cytochrome b6. J Biol Chem 1997;272:32427–32435 [CrossRef][PubMed]
    [Google Scholar]
  111. Kuras R, Saint-Marcoux D, Wollman FA, de Vitry C. A specific c-type cytochrome maturation system is required for oxygenic photosynthesis. Proc Natl Acad Sci USA 2007;104:9906–9910 [CrossRef][PubMed]
    [Google Scholar]
  112. Lezhneva L, Kuras R, Ephritikhine G, de Vitry C. A novel pathway of cytochrome c biogenesis is involved in the assembly of the cytochrome b6f complex in arabidopsis chloroplasts. J Biol Chem 2008;283:24608–24616 [CrossRef][PubMed]
    [Google Scholar]
  113. Inoue K, Dreyfuss BW, Kindle KL, Stern DB, Merchant S et al. Ccs1, a nuclear gene required for the post-translational assembly of chloroplast c-type cytochromes. J Biol Chem 1997;272:31747–31754 [CrossRef][PubMed]
    [Google Scholar]
  114. Xie Z, Merchant S. A novel pathway for cytochromes c biogenesis in chloroplasts. Biochim Biophys Acta 1998;1365:309–318 [CrossRef][PubMed]
    [Google Scholar]
  115. Gabilly ST, Dreyfuss BW, Karamoko M, Corvest V, Kropat J et al. CCS5, a thioredoxin-like protein involved in the assembly of plastid c-type cytochromes. J Biol Chem 2010;285:29738–29749 [CrossRef][PubMed]
    [Google Scholar]
  116. Motohashi K, Hisabori T. HCF164 receives reducing equivalents from stromal thioredoxin across the thylakoid membrane and mediates reduction of target proteins in the thylakoid lumen. J Biol Chem 2006;281:35039–35047 [CrossRef][PubMed]
    [Google Scholar]
  117. Heinnickel ML, Grossman AR. The GreenCut: re-evaluation of physiological role of previously studied proteins and potential novel protein functions. Photosynth Res 2013;116:427–436 [CrossRef][PubMed]
    [Google Scholar]
  118. Xiao J, Li J, Ouyang M, Yun T, He B et al. DAC is involved in the accumulation of the cytochrome b6f complex in Arabidopsis. Plant Physiol 2012;160:1911–1922 [CrossRef][PubMed]
    [Google Scholar]
  119. Broquist HP, Trupin JS. Amino acid metabolism. Annu Rev Biochem 1966;35:231–274 [CrossRef]
    [Google Scholar]
  120. Cunningham FX, Gantt E. Elucidation of the pathway to astaxanthin in the flowers of Adonis aestivalis. Plant Cell 2011;23:3055–3069 [CrossRef][PubMed]
    [Google Scholar]
  121. Peden EA, Boehm M, Mulder DW, Davis R, Old WM et al. Identification of global ferredoxin interaction networks in Chlamydomonas reinhardtii. J Biol Chem 2013;288:35192–35209 [CrossRef][PubMed]
    [Google Scholar]
  122. Yacoby I, Pochekailov S, Toporik H, Ghirardi ML, King PW et al. Photosynthetic electron partitioning between [FeFe]-hydrogenase and ferredoxin:NADP+-oxidoreductase (FNR) enzymes in vitro. Proc Natl Acad Sci USA 2011;108:9396–9401 [CrossRef]
    [Google Scholar]
  123. Hanke GUYT, Okutani S, Satomi Y, Takao T, Suzuki A et al. Multiple iso-proteins of FNR in Arabidopsis: evidence for different contributions to chloroplast function and nitrogen assimilation. Plant, Cell and Environment 2005;28:1146–1157 [CrossRef]
    [Google Scholar]
  124. Merchant S, Bogorad L. Regulation by copper of the expression of plastocyanin and cytochrome c552 in Chlamydomonas reinhardi. Mol Cell Biol 1986;6:462–469 [CrossRef][PubMed]
    [Google Scholar]
  125. Howe CJ, Schlarb-Ridley BG, Wastl J, Purton S, Bendall DS. The novel cytochrome c6 of chloroplasts: a case of evolutionary bricolage?. J Exp Bot 2006;57:13–22 [CrossRef][PubMed]
    [Google Scholar]
  126. Wastl J, Purton S, Bendall DS, Howe CJ. Two forms of cytochrome c6 in a single eukaryote. Trends Plant Sci 2004;9:474–476 [CrossRef][PubMed]
    [Google Scholar]
  127. Hervás M, Navarro JA, de La Rosa MA. Electron transfer between membrane complexes and soluble proteins in photosynthesis. Acc Chem Res 2003;36:798–805 [CrossRef][PubMed]
    [Google Scholar]
  128. Marcaida MJ, Schlarb-Ridley BG, Worrall JA, Wastl J, Evans TJ et al. Structure of cytochrome c6A, a novel dithio-cytochrome of Arabidopsis thaliana, and its reactivity with plastocyanin: implications for function. J Mol Biol 2006;360:968–977 [CrossRef][PubMed]
    [Google Scholar]
  129. Hertle AP, Blunder T, Wunder T, Pesaresi P, Pribil M et al. PGRL1 is the elusive ferredoxin-plastoquinone reductase in photosynthetic cyclic electron flow. Mol Cell 2013;49:511–523 [CrossRef][PubMed]
    [Google Scholar]
  130. Iwai M, Takizawa K, Tokutsu R, Okamuro A, Takahashi Y et al. Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis. Nature 2010;464:1210–1213 [CrossRef][PubMed]
    [Google Scholar]
  131. Johnson X, Steinbeck J, Dent RM, Takahashi H, Richaud P et al. Proton gradient regulation 5-mediated cyclic electron flow under ATP- or redox-limited conditions: a study of ΔATpase pgr5 and ΔrbcL pgr5 mutants in the green alga Chlamydomonas reinhardtii. Plant Physiol 2014;165:438–452 [CrossRef][PubMed]
    [Google Scholar]
  132. Munekage Y, Hojo M, Meurer J, Endo T, Tasaka M et al. PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell 2002;110:361–371 [CrossRef][PubMed]
    [Google Scholar]
  133. Yamamoto H, Shikanai T. PGR5-dependent cyclic electron flow protects photosystem I under fluctuating light at donor and acceptor sides. Plant Physiol 2019;179: [CrossRef][PubMed]
    [Google Scholar]
  134. Yamori W, Shikanai T. Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth. Annu Rev Plant Biol 2016;67:81–106 [CrossRef][PubMed]
    [Google Scholar]
  135. Rühle T, Razeghi JA, Vamvaka E, Viola S, Gandini C et al. The Arabidopsis protein CONSERVED ONLY IN THE GREEN LINEAGE160 promotes the assembly of the membranous part of the chloroplast ATP synthase. Plant Physiol 2014;165:207–226 [CrossRef][PubMed]
    [Google Scholar]
  136. Portis AR, Li C, Wang D, Salvucci ME. Regulation of Rubisco activase and its interaction with Rubisco. J Exp Bot 2008;59:1597–1604 [CrossRef][PubMed]
    [Google Scholar]
  137. Raunser S, Magnani R, Huang Z, Houtz RL, Trievel RC et al. Rubisco in complex with Rubisco large subunit methyltransferase. Proc Natl Acad Sci USA 2009;106:3160–3165 [CrossRef][PubMed]
    [Google Scholar]
  138. Wilson RH, Hayer-Hartl M. Complex chaperone dependence of rubisco biogenesis. Biochemistry 2018;57:3210–3216 [CrossRef]
    [Google Scholar]
  139. Mininno M, Brugière S, Pautre V, Gilgen A, Ma S et al. Characterization of chloroplastic fructose 1,6-bisphosphate aldolases as lysine-methylated proteins in plants. J Biol Chem 2012;287:21034–21044 [CrossRef]
    [Google Scholar]
  140. Ifuku K. The PsbP and PsbQ family proteins in the photosynthetic machinery of chloroplasts. Plant Physiol Biochem 2014;81:108–114 [CrossRef][PubMed]
    [Google Scholar]
  141. Roose JL, Frankel LK, Bricker TM. Developmental defects in mutants of the PsbP domain protein 5 in Arabidopsis thaliana. PLoS ONE 2011;6:e28624 [CrossRef]
    [Google Scholar]
  142. Schmidt M et al. Proteomic analysis of the eyespot of Chlamydomonas reinhardtii provides novel insights into its component and tactic movements. The Plant Cell Online 2006;18:1908–1930 [CrossRef]
    [Google Scholar]
  143. Schulze T, Schreiber S, Iliev D, Boesger J, Trippens J et al. The heme-binding protein SOUL3 of Chlamydomonas reinhardtii influences size and position of the eyespot. Mol Plant 2013;6:931–944 [CrossRef][PubMed]
    [Google Scholar]
  144. Takahashi S, Ogawa T, Inoue K, Masuda T. Characterization of cytosolic tetrapyrrole-binding proteins in Arabidopsis thaliana. Photochem Photobiol Sci 2008;7:1216–1224 [CrossRef][PubMed]
    [Google Scholar]
  145. Lee H-J, Mochizuki N, Masuda T, Buckhout TJ. Disrupting the bimolecular binding of the haem-binding protein 5 (AtHBP5) to haem oxygenase 1 (HY1) leads to oxidative stress in Arabidopsis. J Exp Bot 2012;63:5967–5978 [CrossRef]
    [Google Scholar]
  146. Wittkopp TM, Schmollinger S, Saroussi S, Hu W, Zhang W et al. Bilin-dependent photoacclimation in Chlamydomonas reinhardtii. Plant Cell 2017;29:2711–2726 [CrossRef][PubMed]
    [Google Scholar]
  147. Li XP, Björkman O, Shih C, Grossman AR, Rosenquist M et al. A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 2000;403:391–395 [CrossRef][PubMed]
    [Google Scholar]
  148. Peltier G, Tolleter D, Billon E, Cournac L. Auxiliary electron transport pathways in chloroplasts of microalgae. Photosynth Res 2010;106:19–31 [CrossRef][PubMed]
    [Google Scholar]
  149. Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 2004;55:373–399 [CrossRef][PubMed]
    [Google Scholar]
  150. Kim S, Sandusky P, Bowlby NR, Aebersold R, Green BR et al. Characterization of a spinach psbS cDNA encoding the 22 kDa protein of photosystem II. FEBS Lett 1992;314:67–71 [CrossRef][PubMed]
    [Google Scholar]
  151. Li XP, Gilmore AM, Niyogi KK. Molecular and global time-resolved analysis of a psbS gene dosage effect on pH- and xanthophyll cycle-dependent nonphotochemical quenching in photosystem II. J Biol Chem 2002;277:33590–33597 [CrossRef][PubMed]
    [Google Scholar]
  152. Bonente G, Howes BD, Caffarri S, Smulevich G, Bassi R. Interactions between the photosystem II subunit PsbS and xanthophylls studied in vivo and in vitro. J Biol Chem 2008;283:8434–8445 [CrossRef][PubMed]
    [Google Scholar]
  153. Bonente G, Passarini F, Cazzaniga S, Mancone C, Buia MC et al. The occurrence of the psbS gene product in Chlamydomonas reinhardtii and in other photosynthetic organisms and its correlation with energy quenching. Photochem Photobiol 2008;84:1359–1370 [CrossRef][PubMed]
    [Google Scholar]
  154. Allorent G, Lefebvre-Legendre L, Chappuis R, Kuntz M, Truong TB et al. UV-B photoreceptor-mediated protection of the photosynthetic machinery in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 2016;113:14864–14869 [CrossRef][PubMed]
    [Google Scholar]
  155. Correa-Galvis V, Redekop P, Guan K, Griess A, Truong TB et al. Photosystem II subunit PsbS is involved in the induction of LHCSR protein-dependent energy dissipation in Chlamydomonas reinhardtii. J Biol Chem 2016;291:17478–17487 [CrossRef][PubMed]
    [Google Scholar]
  156. Tibiletti T, Auroy P, Peltier G, Caffarri S. Chlamydomonas reinhardtii PsbS protein is functional and accumulates rapidly and transiently under high light. Plant Physiol 2016;171:00572.2016–00572.2572 [CrossRef][PubMed]
    [Google Scholar]
  157. Peers G, Truong TB, Ostendorf E, Busch A, Elrad D et al. An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature 2009;462:518–521 [CrossRef][PubMed]
    [Google Scholar]
  158. Grimm B, Kruse E, Kloppstech K. Transiently expressed early light-inducible thylakoid proteins share transmembrane domains with light-harvesting chlorophyll binding proteins. Plant Mol Biol 1989;13:583–593 [CrossRef][PubMed]
    [Google Scholar]
  159. Meyer G, Kloppstech K. A rapidly light-induced chloroplast protein with a high turnover coded for by pea nuclear DNA. Eur J Biochem 1984;138:201–207 [CrossRef]
    [Google Scholar]
  160. Tanaka R, Rothbart M, Oka S, Takabayashi A, Takahashi K et al. LIL3, a light-harvesting-like protein, plays an essential role in chlorophyll and tocopherol biosynthesis. Proc Natl Acad Sci USA 2010;107:16721–16725 [CrossRef][PubMed]
    [Google Scholar]
  161. Montané MH, Kloppstech K. The family of light-harvesting-related proteins (LHCs, ELIPs, HLIPs): was the harvesting of light their primary function?. Gene 2000;258:1–8 [CrossRef][PubMed]
    [Google Scholar]
  162. Dolganov NA, Bhaya D, Grossman AR. Cyanobacterial protein with similarity to the chlorophyll a/b binding proteins of higher plants: evolution and regulation. Proc Natl Acad Sci USA 1995;92:636–640 [CrossRef][PubMed]
    [Google Scholar]
  163. Teramoto H, Itoh T, Ono TA. High-intensity-light-dependent and transient expression of new genes encoding distant relatives of light-harvesting chlorophyll-a/b proteins in Chlamydomonas reinhardtii. Plant Cell Physiol 2004;45:1221–1232 [CrossRef][PubMed]
    [Google Scholar]
  164. He Q, Dolganov N, Bjorkman O, Grossman AR. The high light-inducible polypeptides in Synechocystis PCC6803. Expression and function in high light. J Biol Chem 2001;276:306–314 [CrossRef][PubMed]
    [Google Scholar]
  165. Jansson S, Andersson J, Kim SJ, Jackowski G. An Arabidopsis thaliana protein homologous to cyanobacterial high-light-inducible proteins. Plant Mol Biol 2000;42:345–351 [CrossRef][PubMed]
    [Google Scholar]
  166. Xu H, Vavilin D, Funk C, Vermaas W. Small Cab-like proteins regulating tetrapyrrole biosynthesis in the cyanobacterium Synechocystis sp. PCC 6803. Plant Mol Biol 2002;49:149–160 [CrossRef][PubMed]
    [Google Scholar]
  167. Brzezowski P, Wilson KE, Gray GR. The PSBP2 protein of Chlamydomonas reinhardtii is required for singlet oxygen-dependent signaling. Planta 2012;236:1289–1303 [CrossRef]
    [Google Scholar]
  168. Shao N, Duan GY, Bock R. A mediator of singlet oxygen responses in Chlamydomonas reinhardtii and Arabidopsis identified by a luciferase-based genetic screen in algal cells. Plant Cell 2013;25:4209–4226 [CrossRef][PubMed]
    [Google Scholar]
  169. Lee KP, Kim C, Landgraf F, Apel K. EXECUTER1- and EXECUTER2-dependent transfer of stress-related signals from the plastid to the nucleus of Arabidopsis thaliana. Proc Natl Acad Sci USA 2007;104:10270–10275 [CrossRef][PubMed]
    [Google Scholar]
  170. Wagner D, Przybyla D, Op den Camp R, Kim C, Landgraf F et al. The genetic basis of singlet oxygen-induced stress responses of Arabidopsis thaliana. Science 2004;306:1183–1185 [CrossRef][PubMed]
    [Google Scholar]
  171. Vener AV, van Kan PJ, Rich PR, Ohad I, Andersson B. Plastoquinol at the quinol oxidation site of reduced cytochrome bf mediates signal transduction between light and protein phosphorylation: thylakoid protein kinase deactivation by a single-turnover flash. Proc Natl Acad Sci USA 1997;94:1585–1590 [CrossRef][PubMed]
    [Google Scholar]
  172. Zito F, Finazzi G, Delosme R, Nitschke W, Picot D, Wollman FA. The Qo site of cytochrome b6f complexes controls the activation of the LHCII kinase. EMBO J 1999;18:2961–2969 [CrossRef]
    [Google Scholar]
  173. Jasinski M, Sudre D, Schansker G, Schellenberg M, Constant S et al. AtOSA1, a member of the Abc1-like family, as a new factor in cadmium and oxidative stress response. Plant Physiol 2008;147:719–731 [CrossRef][PubMed]
    [Google Scholar]
  174. Manara A, Dalcorso G, Leister D, Jahns P, Baldan B et al. AtSIA1 AND AtOSA1: two Abc1 proteins involved in oxidative stress responses and iron distribution within chloroplasts. New Phytol 2014;201:452–465 [CrossRef][PubMed]
    [Google Scholar]
  175. Mustilli AC, Merlot S, Vavasseur A, Fenzi F, Giraudat J. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 2002;14:3089–3099 [CrossRef][PubMed]
    [Google Scholar]
  176. Yoshida R, Hobo T, Ichimura K, Mizoguchi T, Takahashi F et al. ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis. Plant Cell Physiol 2002;43:1473–1483 [CrossRef][PubMed]
    [Google Scholar]
  177. Myers C, Romanowsky SM, Barron YD, Garg S, Azuse CL et al. Calcium-dependent protein kinases regulate polarized tip growth in pollen tubes. Plant J 2009;59:528–539 [CrossRef][PubMed]
    [Google Scholar]
  178. Ichimura K, Shinozaki K, Tena G, Sheen J, Henry Y et al. Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci 2002;7:301–308[PubMed]
    [Google Scholar]
  179. Casas-Mollano JA, Jeong BR, Xu J, Moriyama H, Cerutti H. The MUT9p kinase phosphorylates histone H3 threonine 3 and is necessary for heritable epigenetic silencing in Chlamydomonas. Proc Natl Acad Sci USA 2008;105:6486–6491 [CrossRef][PubMed]
    [Google Scholar]
  180. Schweighofer A, Hirt H, Meskiene I. Plant PP2C phosphatases: emerging functions in stress signaling. Trends Plant Sci 2004;9:236–243 [CrossRef][PubMed]
    [Google Scholar]
  181. Conklin PL, Saracco SA, Norris SR, Last RL. Identification of ascorbic acid-deficient Arabidopsis thaliana mutants. Genetics 2000;154:847–856
    [Google Scholar]
  182. Conklin PL, Depaolo D, Wintle B, Schatz C, Buckenmeyer G. Identification of Arabidopsis VTC3 as a putative and unique dual function protein kinase::protein phosphatase involved in the regulation of the ascorbic acid pool in plants. J Exp Bot 2013;64:2793–2804 [CrossRef]
    [Google Scholar]
  183. Andreeva AV, Kutuzov MA. Widespread presence of "bacterial-like" PPP phosphatases in eukaryotes. BMC Evol Biol 2004;4:47 [CrossRef]
    [Google Scholar]
  184. Li X, Patena W, Fauser F, Jinkerson RE, Saroussi S et al. A genome-wide algal mutant library reveals a global view of genes required for eukaryotic photosynthesis. Biorxiv 2018
    [Google Scholar]
  185. Uhrig RG, Moorhead GB. Two ancient bacterial-like PPP family phosphatases from Arabidopsis are highly conserved plant proteins that possess unique properties. Plant Physiol 2011;157:1778–1792 [CrossRef][PubMed]
    [Google Scholar]
  186. Uhrig RG, Labandera AM, Tang LY, Sieben NA, Goudreault M et al. Activation of mitochondrial protein phosphatase SLP2 by MIA40 regulates seed germination. Plant Physiol 2017;173:956–969 [CrossRef][PubMed]
    [Google Scholar]
  187. Uhrig RG, Moorhead G. AtSLP2 is an intronless protein phosphatase that co-expresses with intronless mitochondrial pentatricopeptide repeat (PPR) and tetratricopeptide (TPR) protein encoding genes. Plant Signal Behav 2017;12:e1307493 [CrossRef][PubMed]
    [Google Scholar]
  188. Petroutsos D, Busch A, Janssen I, Trompelt K, Bergner SV et al. The chloroplast calcium sensor CAS is required for photoacclimation in Chlamydomonas reinhardtii. Plant Cell 2011;23:2950–2963 [CrossRef][PubMed]
    [Google Scholar]
  189. Terashima M, Petroutsos D, Hüdig M, Tolstygina I, Trompelt K et al. Calcium-dependent regulation of cyclic photosynthetic electron transfer by a CAS, ANR1, and PGRL1 complex. Proc Natl Acad Sci USA 2012;109:17717–17722 [CrossRef][PubMed]
    [Google Scholar]
  190. Nomura H, Komori T, Kobori M, Nakahira Y, Shiina T. Evidence for chloroplast control of external Ca2+-induced cytosolic Ca2+ transients and stomatal closure. Plant J 2008;53:988–998 [CrossRef][PubMed]
    [Google Scholar]
  191. Weinl S, Held K, Schlücking K, Steinhorst L, Kuhlgert S et al. A plastid protein crucial for Ca2+-regulated stomatal responses. New Phytol 2008;179:675–686 [CrossRef][PubMed]
    [Google Scholar]
  192. Nomura H, Komori T, Uemura S, Kanda Y, Shimotani K et al. Chloroplast-mediated activation of plant immune signalling in Arabidopsis. Nat Commun 2012;3:926 [CrossRef][PubMed]
    [Google Scholar]
  193. Braeken K, Moris M, Daniels R, Vanderleyden J, Michiels J. New horizons for (p)ppGpp in bacterial and plant physiology. Trends Microbiol 2006;14:45–54 [CrossRef][PubMed]
    [Google Scholar]
  194. Kasai K, Usami S, Yamada T, Endo Y, Ochi K et al. A RelA-SpoT homolog (Cr-RSH) identified in Chlamydomonas reinhardtii generates stringent factor in vivo and localizes to chloroplasts in vitro. Nucleic Acids Res 2002;30:4985–4992 [CrossRef][PubMed]
    [Google Scholar]
  195. Masuda S, Mizusawa K, Narisawa T, Tozawa Y, Ohta H et al. The bacterial stringent response, conserved in chloroplasts, controls plant fertilization. Plant Cell Physiol 2008;49:135–141 [CrossRef][PubMed]
    [Google Scholar]
  196. Terauchi AM, Lu SF, Zaffagnini M, Tappa S, Hirasawa M et al. Pattern of expression and substrate specificity of chloroplast ferredoxins from Chlamydomonas reinhardtii. J Biol Chem 2009;284:25867–25878 [CrossRef][PubMed]
    [Google Scholar]
  197. Voss I, Goss T, Murozuka E, Altmann B, McLean KJ et al. FdC1, a novel ferredoxin protein capable of alternative electron partitioning, increases in conditions of acceptor limitation at photosystem I. J Biol Chem 2011;286:50–59 [CrossRef][PubMed]
    [Google Scholar]
  198. Buchanan BB, Balmer Y. Redox regulation: a broadening horizon. Annu Rev Plant Biol 2005;56:187–220 [CrossRef][PubMed]
    [Google Scholar]
  199. Schurmann P. Ferredoxin-dependent thioredoxin reductase: a unique iron-sulfur protein. Methods Enzymol 2002;347:403–411
    [Google Scholar]
  200. Huppe HC, de Lamotte-Guery F, Jacquot JP, Buchanan BB. The ferredoxin-thioredoxin system of a green alga, Chlamydomonas reinhardtii: Identification and characterization of thioredoxins and ferredoxin-thioredoxin reductase components. Planta 1990;180:341–351
    [Google Scholar]
  201. Foyer CH, Noctor G. Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 2011;155:2–18 [CrossRef][PubMed]
    [Google Scholar]
  202. Tóth SZ, Schansker G, Garab G. The physiological roles and metabolism of ascorbate in chloroplasts. Physiol Plant 2013;148:161–175 [CrossRef][PubMed]
    [Google Scholar]
  203. Kangasjärvi S, Lepistö A, Hännikäinen K, Piippo M, Luomala EM et al. Diverse roles for chloroplast stromal and thylakoid-bound ascorbate peroxidases in plant stress responses. Biochem J 2008;412:275–285 [CrossRef][PubMed]
    [Google Scholar]
  204. Chen C, Letnik I, Hacham Y, Dobrev P, Ben-Daniel BH et al. ASCORBATE PEROXIDASE6 protects Arabidopsis desiccating and germinating seeds from stress and mediates cross talk between reactive oxygen species, abscisic acid, and auxin. Plant Physiol 2014;166:370–383 [CrossRef][PubMed]
    [Google Scholar]
  205. Ledford HK, Chin BL, Niyogi KK. Acclimation to singlet oxygen stress in Chlamydomonas reinhardtii. Eukaryot Cell 2007;6:919–930 [CrossRef][PubMed]
    [Google Scholar]
  206. Lisenbee CS, Lingard MJ, Trelease RN. Arabidopsis peroxisomes possess functionally redundant membrane and matrix isoforms of monodehydroascorbate reductase. Plant J 2005;43:900–914 [CrossRef][PubMed]
    [Google Scholar]
  207. Urzica EI, Adler LN, Page MD, Linster CL, Arbing MA et al. Impact of oxidative stress on ascorbate biosynthesis in Chlamydomonas via regulation of the VTC2 gene encoding a GDP-L-galactose phosphorylase. J Biol Chem 2012;287:14234–14245 [CrossRef][PubMed]
    [Google Scholar]
  208. Aslund F, Berndt KD, Holmgren A. Redox potentials of glutaredoxins and other thiol-disulfide oxidoreductases of the thioredoxin superfamily determined by direct protein-protein redox equilibria. J Biol Chem 1997;272:30780–30786 [CrossRef][PubMed]
    [Google Scholar]
  209. Liu X, Liu S, Feng Y, Liu J-Z, Chen Y et al. Structural insights into the N-terminal GIY–YIG endonuclease activity of Arabidopsis glutaredoxin AtGRXS16 in chloroplasts. Proc Natl Acad Sci USA 2013;110:9565–9570 [CrossRef]
    [Google Scholar]
  210. Rouhier N, Lemaire SD, Jacquot JP. The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionylation. Annu Rev Plant Biol 2008;59:143–166 [CrossRef][PubMed]
    [Google Scholar]
  211. May MJ, Leaver CJ. Arabidopsis thaliana gamma-glutamylcysteine synthetase is structurally unrelated to mammalian, yeast, and Escherichia coli homologs. Proc Natl Acad Sci USA 1994;91:10059–10063 [CrossRef][PubMed]
    [Google Scholar]
  212. Hiruma K, Fukunaga S, Bednarek P, Pislewska-Bednarek M, Watanabe S et al. Glutathione and tryptophan metabolism are required for Arabidopsis immunity during the hypersensitive response to hemibiotrophs. Proc Natl Acad Sci USA 2013;110:9589–9594 [CrossRef][PubMed]
    [Google Scholar]
  213. Buchanan BB. Role of light in the regulation of chloroplast enzymes. Annu Rev Plant Physiol 1980;31:341–374 [CrossRef]
    [Google Scholar]
  214. Jacquot J-P, Lancelin J-M, Meyer Y. Thioredoxins: structure and function in plant cells. New Phytol 1997;136:543–570
    [Google Scholar]
  215. Mestres-Ortega D, Meyer Y. The Arabidopsis thaliana genome encodes at least four thioredoxins m and a new prokaryotic-like thioredoxin. Gene 1999;240:307–316 [CrossRef][PubMed]
    [Google Scholar]
  216. Zybailov B, Rutschow H, Friso G, Rudella A, Emanuelsson O et al. Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. PLoS One 2008;3:e1994 [CrossRef][PubMed]
    [Google Scholar]
  217. Collin V, Issakidis-Bourquet E, Marchand C, Hirasawa M, Lancelin JM et al. The Arabidopsis plastidial thioredoxins: new functions and new insights into specificity. J Biol Chem 2003;278:23747–23752
    [Google Scholar]
  218. Dangoor I, Peled-Zehavi H, Wittenberg G, Danon A. A chloroplast light-regulated oxidative sensor for moderate light intensity in Arabidopsis. Plant Cell 2012;24:1894–1906 [CrossRef][PubMed]
    [Google Scholar]
  219. Pruvot G, Cuiné S, Peltier G, Rey P. Characterization of a novel drought-induced 34-kDa protein located in the thylakoids of Solanum tuberosum L. plants. Planta 1996;198:471–479 [CrossRef][PubMed]
    [Google Scholar]
  220. Arsova B, Hoja U, Wimmelbacher M, Greiner E, Ustun S et al. Plastidial thioredoxin z interacts with two fructokinase-like proteins in a thiol-dependent manner: evidence for an essential role in chloroplast development in arabidopsis and Nicotiana benthamiana. The Plant Cell Online 2010;22:1498–1515 [CrossRef]
    [Google Scholar]
  221. Meyer Y, Riondet C, Constans L, Abdelgawwad MR, Reichheld JP et al. Evolution of redoxin genes in the green lineage. Photosynth Res 2006;89:179–192 [CrossRef][PubMed]
    [Google Scholar]
  222. Zhu J, Fu X, Koo YD, Zhu JK, Jenney FE et al. An enhancer mutant of Arabidopsis salt overly sensitive 3 mediates both ion homeostasis and the oxidative stress response. Mol Cell Biol 2007;27:5214–5224 [CrossRef][PubMed]
    [Google Scholar]
  223. Sang Y, Barbosa JM, Wu H, Locy RD, Singh NK. Identification of a pyridoxine (pyridoxamine) 5'-phosphate oxidase from Arabidopsis thaliana. FEBS Lett 2007;581:344–348 [CrossRef][PubMed]
    [Google Scholar]
  224. Drewke C, Leistner E. Biosynthesis of vitamin B6 and structurally related derivatives. Vitam Horm 2001;61:121–155[PubMed]
    [Google Scholar]
  225. Jain SK, Lim G. Pyridoxine and pyridoxamine inhibits superoxide radicals and prevents lipid peroxidation, protein glycosylation, and (Na+ + K+)-ATPase activity reduction in high glucose-treated human erythrocytes. Free Radic Biol Med 2001;30:232–237 [CrossRef][PubMed]
    [Google Scholar]
  226. Belhaj K, Lin B, Mauch F. The chloroplast protein RPH1 plays a role in the immune response of Arabidopsis to Phytophthora brassicae. Plant J 2009;58:287–298 [CrossRef][PubMed]
    [Google Scholar]
  227. Roos J, Bejai S, Oide S, Dixelius C. RabGAP22 is required for defense to the vascular pathogen Verticillium longisporum and contributes to stomata immunity. PLoS One 2014;9:e88187 [CrossRef][PubMed]
    [Google Scholar]
  228. Simkin AJ, McAusland L, Lawson T, Raines CA. Overexpression of the RieskeFeS Protein increases electron transport rates and biomass yield. Plant Physiol 2017;175:134–145 [CrossRef][PubMed]
    [Google Scholar]
  229. Jin P, Sun J, Chitnis PR. Structural features and assembly of the soluble overexpressed PsaD subunit of photosystem I. Biochim Biophys Acta 1999;1410:7–18 [CrossRef][PubMed]
    [Google Scholar]
  230. Chitnis VP, Ke A, Chitnis PR. The PsaD subunit of photosystem I. Mutations in the basic domain reduce the level of PsaD in the membranes. Plant Physiol 1997;115:1699–1705 [CrossRef][PubMed]
    [Google Scholar]
  231. Jeanjean R, Latifi A, Matthijs HC, Havaux M. The PsaE subunit of photosystem I prevents light-induced formation of reduced oxygen species in the cyanobacterium Synechocystis sp. PCC 6803. Biochim Biophys Acta 2008;1777:308–316 [CrossRef][PubMed]
    [Google Scholar]
  232. Lushy A, Verchovsky L, Nechushtai R. The stable assembly of newly synthesized PsaE into the photosystem I complex occurring via the exchange mechanism is facilitated by electrostatic interactions. Biochemistry 2002;41:11192–11199 [CrossRef][PubMed]
    [Google Scholar]
  233. Hippler M, Drepper F, Farah J, Rochaix JD. Fast electron transfer from cytochrome c6 and plastocyanin to photosystem I of Chlamydomonas reinhardtii requires PsaF. Biochemistry 1997;36:6343–6349 [CrossRef][PubMed]
    [Google Scholar]
  234. Farah J, Rappaport F, Choquet Y, Joliot P, Rochaix JD. Isolation of a psaF-deficient mutant of Chlamydomonas reinhardtii: efficient interaction of plastocyanin with the photosystem I reaction center is mediated by the PsaF subunit. Embo J 1995;14:4976–4984 [CrossRef][PubMed]
    [Google Scholar]
  235. Farkas D, Franzén LG, Hansson Ö. Cloning, expression and purification of the luminal domain of spinach photosystem 1 subunit PsaF functional in binding to plastocyanin and with a disulfide bridge required for folding. Protein Expr Purif 2011;78:156–166 [CrossRef][PubMed]
    [Google Scholar]
  236. Farkas D, Hansson O. An NMR study elucidating the binding of Mg(II) and Mn(II) to spinach plastocyanin. Regulation of the binding of plastocyanin to subunit PsaF of photosystem I. Biochim Biophys Acta 2011;1807:1539–1548 [CrossRef][PubMed]
    [Google Scholar]
  237. Ozawa S, Onishi T, Takahashi Y. Identification and characterization of an assembly intermediate subcomplex of photosystem I in the green alga Chlamydomonas reinhardtii. J Biol Chem 2010;285:20072–20079 [CrossRef][PubMed]
    [Google Scholar]
  238. Jensen PE, Rosgaard L, Knoetzel J, Scheller HV. Photosystem I activity is increased in the absence of the PSI-G subunit. J Biol Chem 2002;277:2798–2803 [CrossRef][PubMed]
    [Google Scholar]
  239. Obokata J, Mikami K, Hayashida N, Nakamura M, Sugiura M. Molecular heterogeneity of photosystem I. psaD, psaE, psaF, psaH, and psaL are all present in isoforms in Nicotiana spp. Plant Physiol 1993;102:1259–1267 [CrossRef][PubMed]
    [Google Scholar]
  240. Nakamura M, Obokata J. Organization of the psaH gene family of photosystem I in Nicotiana sylvestris. Plant Cell Physiol 1994;35:297–302[PubMed]
    [Google Scholar]
  241. Mant A, Woolhead CA, Moore M, Henry R, Robinson C. Insertion of PsaK into the thylakoid membrane in a "Horseshoe" conformation occurs in the absence of signal recognition particle, nucleoside triphosphates, or functional albino3. J Biol Chem 2001;276:36200–36206 [CrossRef][PubMed]
    [Google Scholar]
  242. Chitnis VP, Chitnis PR. PsaL subunit is required for the formation of photosystem I trimers in the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett 1993;336:330–334 [CrossRef][PubMed]
    [Google Scholar]
  243. Kouril R, Yeremenko N, D'Haene S, Oostergetel GT, Matthijs HC et al. Supercomplexes of IsiA and photosystem I in a mutant lacking subunit PsaL. Biochim Biophys Acta 1706;2005:262–266
    [Google Scholar]
  244. Jensen PE, Haldrup A, Zhang S, Scheller HV. The PSI-O subunit of plant photosystem I is involved in balancing the excitation pressure between the two photosystems. J Biol Chem 2004;279:24212–24217 [CrossRef][PubMed]
    [Google Scholar]
  245. Lorković ZJ, Schröder WP, Pakrasi HB, Irrgang KD, Herrmann RG et al. Molecular characterization of PsbW, a nuclear-encoded component of the photosystem II reaction center complex in spinach. Proc Natl Acad Sci USA 1995;92:8930–8934 [CrossRef][PubMed]
    [Google Scholar]
  246. Hou X, Fu A, Garcia VJ, Buchanan BB, Luan S. PSB27: A thylakoid protein enabling Arabidopsis to adapt to changing light intensity. Proc Natl Acad Sci USA 2015;112:1613–1618 [CrossRef][PubMed]
    [Google Scholar]
  247. Dobáková M, Sobotka R, Tichý M, Komenda J. Psb28 protein is involved in the biogenesis of the photosystem II inner antenna CP47 (PsbB) in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol 2009;149:1076–1086 [CrossRef][PubMed]
    [Google Scholar]
  248. Offenbacher AR, Polander BC, Barry BA. An intrinsically disordered photosystem II subunit, PsbO, provides a structural template and a sensor of the hydrogen-bonding network in photosynthetic water oxidation. J Biol Chem 2013;288:29056–29068 [CrossRef][PubMed]
    [Google Scholar]
  249. del Val C, Bondar AN. Charged groups at binding interfaces of the PsbO subunit of photosystem II: A combined bioinformatics and simulation study. Biochim Biophys Acta Bioenerg 2017;1858:432–441 [CrossRef][PubMed]
    [Google Scholar]
  250. Mummadisetti MP, Frankel LK, Bellamy HD, Sallans L, Goettert JS et al. Use of protein cross-linking and radiolytic labeling to elucidate the structure of PsbO within higher-plant photosystem II. Biochemistry 2016;55:3204–3213 [CrossRef][PubMed]
    [Google Scholar]
  251. Bricker TM, Roose JL, Zhang P, Frankel LK. The PsbP family of proteins. Photosynth Res 2013;116:235–250 [CrossRef][PubMed]
    [Google Scholar]
  252. Ifuku K, Ishihara S, Sato F. Molecular functions of oxygen-evolving complex family proteins in photosynthetic electron flow. J Integr Plant Biol 2010;52:723–734 [CrossRef][PubMed]
    [Google Scholar]
  253. Wang C, Takahashi H, Shikanai T. PROTON GRADIENT REGULATION 5 contributes to ferredoxin-dependent cyclic phosphorylation in ruptured chloroplasts. Biochim Biophys Acta Bioenerg 2018;1173–1179 [CrossRef][PubMed]
    [Google Scholar]
  254. Dumas L, Zito F, Blangy S, Auroy P, Johnson X et al. A stromal region of cytochrome b 6 f subunit IV is involved in the activation of the Stt7 kinase in Chlamydomonas. Proc Natl Acad Sci USA 2017;114:12063–12068 [CrossRef][PubMed]
    [Google Scholar]
  255. Shapiguzov A, Chai X, Fucile G, Longoni P, Zhang L et al. Activation of the Stt7/STN7 kinase through dynamic interactions with the cytochrome b6f complex. Plant Physiol 2016;171:82–92 [CrossRef][PubMed]
    [Google Scholar]
  256. Muranaka LS, Rütgers M, Bujaldon S, Heublein A, Geimer S et al. TEF30 Interacts with photosystem II monomers and is involved in the repair of photodamaged photosystem II in Chlamydomonas reinhardtii. Plant Physiol 2016;170:821–840 [CrossRef][PubMed]
    [Google Scholar]
  257. Wientjes E, Oostergetel GT, Jansson S, Boekema EJ, Croce R. The role of Lhca complexes in the supramolecular organization of higher plant photosystem I. J Biol Chem 2009;284:7803–7810 [CrossRef][PubMed]
    [Google Scholar]
  258. Shen J, Williams-Carrier R, Barkan A. PSA3, a protein on the stromal face of the thylakoid membrane, promotes photosystem I accumulation in cooperation with the assembly factor PYG7. Plant Physiol 2017;174:1850–1862 [CrossRef][PubMed]
    [Google Scholar]
  259. Heinnickel M, Kim RG, Wittkopp TM, Yang W, Walters KA et al. Tetratricopeptide repeat protein protects photosystem I from oxidative disruption during assembly. Proc Natl Acad Sci USA 2016;113:2774–2779 [CrossRef][PubMed]
    [Google Scholar]
  260. Liu J, Yang H, Lu Q, Wen X, Chen F et al. PsbP-domain protein1, a nuclear-encoded thylakoid lumenal protein, is essential for photosystem I assembly in Arabidopsis. Plant Cell 2012;24:4992–5006 [CrossRef][PubMed]
    [Google Scholar]
  261. Lin YH, Pan KY, Hung CH, Huang HE, Chen CL et al. Overexpression of ferredoxin, PETF, enhances tolerance to heat stress in Chlamydomonas reinhardtii. Int J Mol Sci 2013;14:20913–20929 [CrossRef][PubMed]
    [Google Scholar]
  262. Pesaresi P, Scharfenberg M, Weigel M, Granlund I, Schröder WP et al. Mutants, overexpressors, and interactors of Arabidopsis plastocyanin isoforms: revised roles of plastocyanin in photosynthetic electron flow and thylakoid redox state. Mol Plant 2009;2:236–248 [CrossRef][PubMed]
    [Google Scholar]
  263. Pollock SV, Colombo SL, Prout DL, Godfrey AC, Moroney JV. Rubisco activase is required for optimal photosynthesis in the green alga Chlamydomonas reinhardtii in a low-CO2 atmosphere. Plant Physiol 2003;133:1854–1861 [CrossRef][PubMed]
    [Google Scholar]
  264. Thieulin-Pardo G, Remy T, Lignon S, Lebrun R, Gontero B. Phosphoribulokinase from Chlamydomonas reinhardtii: a Benson-Calvin cycle enzyme enslaved to its cysteine residues. Mol Biosyst 2015;11:1134–1145 [CrossRef][PubMed]
    [Google Scholar]
  265. Xie Y, Mao Y, Duan X, Zhou H, Lai D et al. Arabidopsis HY1-modulated stomatal movement: an integrative hub is functionally associated with ABI4 in dehydration-induced ABA responsiveness. Plant Physiol 2016;170:1699–1713 [CrossRef][PubMed]
    [Google Scholar]
  266. Hayami N, Sakai Y, Kimura M, Saito T, Tokizawa M et al. The responses of arabidopsis early light-induced protein2 to ultraviolet B, high light, and cold stress are regulated by a transcriptional regulatory unit composed of two elements. Plant Physiol 2015;169:840–855 [CrossRef][PubMed]
    [Google Scholar]
  267. Shumbe L, D'Alessandro S, Shao N, Chevalier A, Ksas B et al. METHYLENE BLUE SENSITIVITY 1 (MBS1) is required for acclimation of Arabidopsis to singlet oxygen and acts downstream of β-cyclocitral. Plant Cell Environ 2017;40:216–226 [CrossRef][PubMed]
    [Google Scholar]
  268. Yoshida R, Umezawa T, Mizoguchi T, Takahashi S, Takahashi F et al. The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. J Biol Chem 2006;281:5310–5318 [CrossRef][PubMed]
    [Google Scholar]
  269. Yang Q, Liu K, Niu X, Wang Q, Wan Y et al. Genome-wide identification of PP2C genes and their expression profiling in response to drought and cold stresses in Medicago truncatula. Sci Rep 2018;8:12841 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000788
Loading
/content/journal/micro/10.1099/mic.0.000788
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error