The aminoglycoside resistance-promoting AmgRS envelope stress-responsive two-component system in is zinc-activated and protects cells from zinc-promoted membrane damage Free

Abstract

Exposure of wild-type (WT) PAO1 to ZnCl (Zn) yielded a concentration-dependent increase in depolarization of the cytoplasmic membrane (CM), an indication that this metal is membrane-damaging. Consistent with this, Zn activated the AmgRS envelope stress-responsive two-component system (TCS) that was previously shown to be activated by and to protect from the membrane-damaging effects of aminoglycoside (AG) antibiotics. A mutant lacking showed enhanced Zn-promoted CM perturbation and was Zn-sensitive, an indication that the TCS protected cells from the CM-damaging effects of this metal. In agreement with this, a mutant carrying an AmgRS-activating mutation was less susceptible to Zn-promoted CM perturbation and more tolerant of elevated levels of Zn than WT. AG activation of AmgRS is known to drive expression of the AG resistance-promoting multidrug efflux operon, and while Zn similarly induced expression this was independent of AmgRS and reliant on a second TCS implicated in regulation, ParRS. MexXY did not, however, contribute to Zn resistance or protection from Zn-promoted CM damage. Despite its activation of AmgRS and induction of , Zn had a minimal impact on the AG resistance of WT although, given that Zn-tolerant AmgRS-activated mutant strains are AG resistant, there is still the prospect of this metal promoting AG resistance development in this organism.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000787
2019-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/165/5/563.html?itemId=/content/journal/micro/10.1099/mic.0.000787&mimeType=html&fmt=ahah

References

  1. Foster AW, Osman D, Robinson NJ. Metal preferences and metallation. J Biol Chem 2014; 289:28095–28103 [View Article][PubMed]
    [Google Scholar]
  2. Lemire JA, Harrison JJ, Turner RJ. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 2013; 11:371–384 [View Article][PubMed]
    [Google Scholar]
  3. Kabir E, Ray S, Kim KH, Yoon HO, Jeon EC et al. Current status of trace metal pollution in soils affected by industrial activities. Sci World J 2012; 2012:1–18 [View Article][PubMed]
    [Google Scholar]
  4. Tella M, Bravin MN, Thuriès L, Cazevieille P, Chevassus-Rosset C et al. Increased zinc and copper availability in organic waste amended soil potentially involving distinct release mechanisms. Environ Pollut 2016; 212:299–306 [View Article][PubMed]
    [Google Scholar]
  5. Seiler C, Berendonk TU. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Front Microbiol 2012; 3:399 [View Article][PubMed]
    [Google Scholar]
  6. Byun JM, Jeong DH, Kim YN, Lee KB, Sung MS et al. Experience of successful treatment of patients with metronidazole-resistant Trichomonas vaginalis with zinc sulfate: a case series. Taiwan J Obstet Gynecol 2015; 54:617–620 [View Article][PubMed]
    [Google Scholar]
  7. Brandt S. The clinical effects of zinc as a topical or oral agent on the clinical response and pathophysiologic mechanisms of acne: a systematic review of the literature. J Drugs Dermatol 2013; 12:542–545[PubMed]
    [Google Scholar]
  8. Djoko KY, Ong CL, Walker MJ, McEwan AG. The role of copper and zinc toxicity in innate immune defense against bacterial pathogens. J Biol Chem 2015; 290:18954–18961 [View Article][PubMed]
    [Google Scholar]
  9. Alhasawi A, Auger C, Appanna VP, Chahma M, Appanna VD. Zinc toxicity and ATP production in Pseudomonas fluorescens . J Appl Microbiol 2014; 117:65–73 [View Article][PubMed]
    [Google Scholar]
  10. Beard SJ, Hughes MN, Poole RK. Inhibition of the cytochrome bd-terminated NADH oxidase system in Escherichia coli K-12 by divalent metal cations. FEMS Microbiol Lett 1995; 131:205–210 [View Article][PubMed]
    [Google Scholar]
  11. Xu FF, Imlay JA. Silver(I), mercury(II), cadmium(II), and zinc(II) target exposed enzymic iron-sulfur clusters when they toxify Escherichia coli . Appl Environ Microbiol 2012; 78:3614–3621
    [Google Scholar]
  12. Robinson NJ, Whitehall SK, Cavet JS. Microbial metallothioneins. Adv Microb Physiol 2001; 44:183–213[PubMed]
    [Google Scholar]
  13. Blindauer CA, Harrison MD, Robinson AK, Parkinson JA, Bowness PW et al. Multiple bacteria encode metallothioneins and SmtA-like zinc fingers. Mol Microbiol 2002; 45:1421–1432 [View Article][PubMed]
    [Google Scholar]
  14. Blindauer CA. Advances in the molecular understanding of biological zinc transport. Chem Commun 2015; 51:4544–4563 [View Article][PubMed]
    [Google Scholar]
  15. Porcheron G, Garénaux A, Proulx J, Sabri M, Dozois CM. Iron, copper, zinc, and manganese transport and regulation in pathogenic Enterobacteria: correlations between strains, site of infection and the relative importance of the different metal transport systems for virulence. Front Cell Infect Microbiol 2013; 3:90 [View Article][PubMed]
    [Google Scholar]
  16. Gray RD, Duncan A, Noble D, Imrie M, O'Reilly DS et al. Sputum trace metals are biomarkers of inflammatory and suppurative lung disease. Chest 2010; 137:635–641 [View Article][PubMed]
    [Google Scholar]
  17. Smith DJ, Anderson GJ, Bell SC, Reid DW. Elevated metal concentrations in the CF airway correlate with cellular injury and disease severity. J Cyst Fibros 2014; 13:289–295 [View Article][PubMed]
    [Google Scholar]
  18. Perron K, Caille O, Rossier C, van Delden C, Dumas JL et al. CzcR-CzcS, a two-component system involved in heavy metal and carbapenem resistance in Pseudomonas aeruginosa . J Biol Chem 2004; 279:8761–8768 [View Article][PubMed]
    [Google Scholar]
  19. Salusso A, Raimunda D. Defining the roles of the cation diffusion facilitators in Fe2+/Zn2+ homeostasis and establishment of their participation in virulence in Pseudomonas aeruginosa . Front Cell Infect Microbiol 2017; 7:84 [View Article][PubMed]
    [Google Scholar]
  20. Gonzalez MR, Ducret V, Leoni S, Perron K. Pseudomonas aeruginosa zinc homeostasis: Key issues for an opportunistic pathogen. Biochim Biophys Acta Gene Regul Mech 2018 in press [View Article][PubMed]
    [Google Scholar]
  21. Nowicki EM, O'Brien JP, Brodbelt JS, Trent MS. Extracellular zinc induces phosphoethanolamine addition to Pseudomonas aeruginosa lipid A via the ColRS two-component system. Mol Microbiol 2015; 97:166–178 [View Article][PubMed]
    [Google Scholar]
  22. Gutu AD, Sgambati N, Strasbourger P, Brannon MK, Jacobs MA et al. Polymyxin resistance of Pseudomonas aeruginosa phoQ mutants is dependent on additional two-component regulatory systems. Antimicrob Agents Chemother 2013; 57:2204–2215 [View Article][PubMed]
    [Google Scholar]
  23. Ainsaar K, Mumm K, Ilves H, Hõrak R. The ColRS signal transduction system responds to the excess of external zinc, iron, manganese, and cadmium. BMC Microbiol 2014; 14:162 [View Article][PubMed]
    [Google Scholar]
  24. Lee LJ, Barrett JA, Poole RK. Genome-wide transcriptional response of chemostat-cultured Escherichia coli to zinc. J Bacteriol 2005; 187:1124–1134 [View Article][PubMed]
    [Google Scholar]
  25. Ogasawara H, Shinohara S, Yamamoto K, Ishihama A. Novel regulation targets of the metal-response BasS-BasR two-component system of Escherichia coli . Microbiology 2012; 158:1482–1492 [View Article][PubMed]
    [Google Scholar]
  26. Froelich JM, Tran K, Wall D. A pmrA constitutive mutant sensitizes Escherichia coli to deoxycholic acid. J Bacteriol 2006; 188:1180–1183 [View Article][PubMed]
    [Google Scholar]
  27. Nishino K, Nikaido E, Yamaguchi A. Regulation of multidrug efflux systems involved in multidrug and metal resistance of Salmonella enterica serovar Typhimurium. J Bacteriol 2007; 189:9066–9075 [View Article][PubMed]
    [Google Scholar]
  28. Xue Y, Osborn J, Panchal A, Mellies JL. The RpoE stress response pathway mediates reduction of the virulence of enteropathogenic Escherichia coli by zinc. Appl Environ Microbiol 2015; 81:3766–3774 [View Article][PubMed]
    [Google Scholar]
  29. Mellies JL, Thomas K, Turvey M, Evans NR, Crane J et al. Zinc-induced envelope stress diminishes type III secretion in enteropathogenic Escherichia coli . BMC Microbiol 2012; 12:123 [View Article][PubMed]
    [Google Scholar]
  30. Egler M, Grosse C, Grass G, Nies DH. Role of the extracytoplasmic function protein family sigma factor RpoE in metal resistance of Escherichia coli . J Bacteriol 2005; 187:2297–2307 [View Article][PubMed]
    [Google Scholar]
  31. Wang D, Fierke CA. The BaeSR regulon is involved in defense against zinc toxicity in E. coli . Metallomics 2013; 5:372–383 [View Article][PubMed]
    [Google Scholar]
  32. Lau CH, Krahn T, Gilmour C, Mullen E, Poole K. AmgRS-mediated envelope stress-inducible expression of the mexXY multidrug efflux operon of Pseudomonas aeruginosa . Microbiologyopen 2015; 4:121–135 [View Article][PubMed]
    [Google Scholar]
  33. Jo JT, Brinkman FS, Hancock RE. Aminoglycoside efflux in Pseudomonas aeruginosa: involvement of novel outer membrane proteins. Antimicrob Agents Chemother 2003; 47:1101–1111[PubMed]
    [Google Scholar]
  34. Lau CH, Fraud S, Jones M, Peterson SN, Poole K. Reduced expression of the rplU-rpmA ribosomal protein operon in mexXY-expressing pan-aminoglycoside-resistant mutants of Pseudomonas aeruginosa . Antimicrob Agents Chemother 2012; 56:5171–5179 [View Article][PubMed]
    [Google Scholar]
  35. Lau CH, Fraud S, Jones M, Peterson SN, Poole K. Mutational activation of the AmgRS two-component system in aminoglycoside-resistant Pseudomonas aeruginosa . Antimicrob Agents Chemother 2013; 57:2243–2251 [View Article][PubMed]
    [Google Scholar]
  36. Krahn T, Gilmour C, Tilak J, Fraud S, Kerr N et al. Determinants of intrinsic aminoglycoside resistance in Pseudomonas aeruginosa . Antimicrob Agents Chemother 2012; 56:5591–5602 [View Article][PubMed]
    [Google Scholar]
  37. Nehme D, Li XZ, Elliot R, Poole K. Assembly of the MexAB-OprM multidrug efflux system of Pseudomonas aeruginosa: identification and characterization of mutations in mexA compromising MexA multimerization and interaction with MexB . J Bacteriol 2004; 186:2973–2983 [View Article][PubMed]
    [Google Scholar]
  38. Yamamoto K, Ishihama A. Transcriptional response of Escherichia coli to external copper. Mol Microbiol 2005; 56:215–227 [View Article][PubMed]
    [Google Scholar]
  39. Pontel LB, Scampoli NL, Porwollik S, Checa SK, McClelland M et al. Identification of a Salmonella ancillary copper detoxification mechanism by a comparative analysis of the genome-wide transcriptional response to copper and zinc excess. Microbiology 2014; 160:1659–1669 [View Article][PubMed]
    [Google Scholar]
  40. Lee S, Hinz A, Bauerle E, Angermeyer A, Juhaszova K et al. Targeting a bacterial stress response to enhance antibiotic action. Proc Natl Acad Sci USA 2009; 106:14570–14575 [View Article][PubMed]
    [Google Scholar]
  41. Hinz A, Lee S, Jacoby K, Manoil C. Membrane proteases and aminoglycoside antibiotic resistance. J Bacteriol 2011; 193:4790–4797 [View Article][PubMed]
    [Google Scholar]
  42. Shimohata N, Chiba S, Saikawa N, Ito K, Akiyama Y. The Cpx stress response system of Escherichia coli senses plasma membrane proteins and controls HtpX, a membrane protease with a cytosolic active site. Genes Cells 2002; 7:653–662 [View Article][PubMed]
    [Google Scholar]
  43. Kihara A, Akiyama Y, Ito K. Different pathways for protein degradation by the FtsH/HflKC membrane-embedded protease complex: an implication from the interference by a mutant form of a new substrate protein, YccA. J Mol Biol 1998; 279:175–188 [View Article][PubMed]
    [Google Scholar]
  44. Matsuo Y, Eda S, Gotoh N, Yoshihara E, Nakae T. MexZ-mediated regulation of mexXY multidrug efflux pump expression in Pseudomonas aeruginosa by binding on the mexZ-mexX intergenic DNA. FEMS Microbiol Lett 2004; 238:23–28 [View Article][PubMed]
    [Google Scholar]
  45. Morita Y, Sobel ML, Poole K. Antibiotic inducibility of the MexXY multidrug efflux system of Pseudomonas aeruginosa: involvement of the antibiotic-inducible PA5471 gene product. J Bacteriol 2006; 188:1847–1855 [View Article][PubMed]
    [Google Scholar]
  46. Hay T, Fraud S, Lau CH, Gilmour C, Poole K. Antibiotic inducibility of the mexXY multidrug efflux operon of Pseudomonas aeruginosa: involvement of the MexZ anti-repressor ArmZ. PLoS One 2013; 8:e56858 [View Article][PubMed]
    [Google Scholar]
  47. Muller C, Plésiat P, Jeannot K. A two-component regulatory system interconnects resistance to polymyxins, aminoglycosides, fluoroquinolones, and β-lactams in Pseudomonas aeruginosa . Antimicrob Agents Chemother 2011; 55:1211–1221 [View Article][PubMed]
    [Google Scholar]
  48. Jeannot K, Bolard A, Plésiat P. Resistance to polymyxins in Gram-negative organisms. Int J Antimicrob Agents 2017; 49:526–535 [View Article][PubMed]
    [Google Scholar]
  49. Gunn JS, Lim KB, Krueger J, Kim K, Guo L et al. PmrA-PmrB-regulated genes necessary for 4-aminoarabinose lipid A modification and polymyxin resistance. Mol Microbiol 1998; 27:1171–1182 [View Article][PubMed]
    [Google Scholar]
  50. Helander IM, Kilpeläinen I, Vaara M. Increased substitution of phosphate groups in lipopolysaccharides and lipid A of the polymyxin-resistant pmrA mutants of Salmonella typhimurium: a 31P-NMR study. Mol Microbiol 1994; 11:481–487 [View Article][PubMed]
    [Google Scholar]
  51. Moskowitz SM, Ernst RK, Miller SI. PmrAB, a two-component regulatory system of Pseudomonas aeruginosa that modulates resistance to cationic antimicrobial peptides and addition of aminoarabinose to lipid A. J Bacteriol 2004; 186:575–579 [View Article][PubMed]
    [Google Scholar]
  52. Shafer WM, Casey SG, Spitznagel JK. Lipid A and resistance of Salmonella typhimurium to antimicrobial granule proteins of human neutrophil granulocytes. Infect Immun 1984; 43:834–838[PubMed]
    [Google Scholar]
  53. Sourek J, Tichý M, Levin J. Effects of certain cations (Fe, Zn, Mg, and Ca) on bacterial endotoxins. Infect Immun 1978; 21:648–654[PubMed]
    [Google Scholar]
  54. Kus JV, Gebremedhin A, Dang V, Tran SL, Serbanescu A et al. Bile salts induce resistance to polymyxin in enterohemorrhagic Escherichia coli O157:H7. J Bacteriol 2011; 193:4509–4515 [View Article][PubMed]
    [Google Scholar]
  55. Baranova N, Nikaido H. The BaeSR two-component regulatory system activates transcription of the yegMNOB (mdtABCD) transporter gene cluster in Escherichia coli and increases its resistance to novobiocin and deoxycholate. J Bacteriol 2002; 184:4168–4176 [View Article][PubMed]
    [Google Scholar]
  56. Poole K. At the nexus of antibiotics and metals: the impact of cu and zn on antibiotic activity and resistance. Trends Microbiol 2017; 25:820–832 [View Article][PubMed]
    [Google Scholar]
  57. Hauser AR, Jain M, Bar-Meir M, McColley SA. Clinical significance of microbial infection and adaptation in cystic fibrosis. Clin Microbiol Rev 2011; 24:29–70 [View Article][PubMed]
    [Google Scholar]
  58. Hogardt M, Heesemann J. Microevolution of Pseudomonas aeruginosa to a chronic pathogen of the cystic fibrosis lung. Curr Top Microbiol Immunol 2013; 358:91–118 [View Article][PubMed]
    [Google Scholar]
  59. Marvig RL, Sommer LM, Molin S, Johansen HK. Convergent evolution and adaptation of Pseudomonas aeruginosa within patients with cystic fibrosis. Nat Genet 2015; 47:57–64 [View Article][PubMed]
    [Google Scholar]
  60. Zohra BS, Habib A. Assessment of heavy metal contamination levels and toxicity in sediments and fishes from the Mediterranean Sea (southern coast of Sfax, Tunisia). Environ Sci Pollut Res Int 2016; 23:13954–13963 [View Article][PubMed]
    [Google Scholar]
  61. Li J. Risk assessment of heavy metals in surface sediments from the Yanghe River, China. Int J Environ Res Public Health 2014; 11:12441–12453 [View Article][PubMed]
    [Google Scholar]
  62. Tabari S, Saravi SS, Bandany GA, Dehghan A, Shokrzadeh M. Heavy metals (Zn, Pb, Cd and Cr) in fish, water and sediments sampled form Southern Caspian Sea, Iran. Toxicol Ind Health 2010; 26:649–656 [View Article][PubMed]
    [Google Scholar]
  63. Ayi B. Infections acquired via fresh water: from lakes to hot tubs. Microbiol Spectr 2015; 3: [View Article][PubMed]
    [Google Scholar]
  64. Ahlén C, Mandal LH, Iversen OJ. Identification of infectious Pseudomonas aeruginosa strains in an occupational saturation diving environment. Occup Environ Med 1998; 55:480–484 [View Article][PubMed]
    [Google Scholar]
  65. Ahlen C, Mandal LH, Iversen OJ. An in-field demonstration of the true relationship between skin infections and their sources in occupational diving systems in the North Sea. Ann Occup Hyg 2003; 47:227–233[PubMed]
    [Google Scholar]
  66. Goeminne PC, Nawrot TS, de Boeck K, Nemery B, Dupont LJ. Proximity to blue spaces and risk of infection with Pseudomonas aeruginosa in cystic fibrosis: a case-control analysis. J Cyst Fibros 2015; 14:741–747 [View Article][PubMed]
    [Google Scholar]
  67. Vives-Flórez M, Garnica D. Comparison of virulence between clinical and environmental Pseudomonas aeruginosa isolates. Int Microbiol 2006; 9:247–252[PubMed]
    [Google Scholar]
  68. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG et al. Short Protocols in Molecular Biology, 2nd ed. New York: John Wiley & Sons, Inc; 1992
    [Google Scholar]
  69. Simon R, Priefer U, Pühler A. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Biotechnology 1983; 1:784–791 [View Article]
    [Google Scholar]
  70. Masuda N, Ohya S. Cross-resistance to meropenem, cephems, and quinolones in Pseudomonas aeruginosa . Antimicrob Agents Chemother 1992; 36:1847–1851 [View Article][PubMed]
    [Google Scholar]
  71. de Kievit TR, Parkins MD, Gillis RJ, Srikumar R, Ceri H et al. Multidrug efflux pumps: expression patterns and contribution to antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 2001; 45:1761–1770 [View Article][PubMed]
    [Google Scholar]
  72. Poole K, Lau CH, Gilmour C, Hao Y, Lam JS. Polymyxin susceptibility in Pseudomonas aeruginosa linked to the mexxy-oprm multidrug efflux System. Antimicrob Agents Chemother 2015; 59:7276–7289 [View Article][PubMed]
    [Google Scholar]
  73. Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ, Schweizer HP. A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 1998; 212:77–86 [View Article][PubMed]
    [Google Scholar]
  74. Keen NT, Tamaki S, Kobayashi D, Trollinger D. Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene 1988; 70:191–197 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000787
Loading
/content/journal/micro/10.1099/mic.0.000787
Loading

Data & Media loading...

Most cited Most Cited RSS feed