1887

Abstract

In most halophiles, K generally acts as a major osmotic solute for osmotic adjustment and pH homeostasis. However, strains also need to extrude excessive intracellular K to avoid its toxicity. In the halotolerant and alkaliphilic Halomonas sp. Y2, an Na-induced K extrusion process was observed when the cells were confronted with high extracellular K pressure and supplementation by millimolar Na ions. Among three mechanosensitive channels (KefA) and two K/H antiporters founded in the genome of the strain, ke1 displayed around 3–5-fold upregulation to ion stress at pH 8.0, while much higher upregulation of Ha-mrp was observed at pH 10.0. Compared to the growth of wild-type Halomonas sp. Y2, deletion of these genes from the strain resulted in different growth phenotypes in response to the osmotic pressure of potassium. In combination with the transcriptional response of these genes, we proposed that the KefA channel of Ke1 is the main contributor to the K-extrusion process under weak alkalinity, while the Mrp system plays critical roles in alleviating K contents at high pH. The combination of these strategies allows Halomonas sp. Y2 to grow over a range of extracellular pH and ion concentrations, and thus protect cells under high osmotic stress conditions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000784
2019-02-19
2020-01-19
Loading full text...

Full text loading...

References

  1. Oren A. Halophilic microorganisms and their environments. Dordrecht The Netherlands: Kluwer Academic Publishers; 2002
    [Google Scholar]
  2. Schwibbert K, Marin-Sanguino A, Bagyan I, Heidrich G, Lentzen G et al. A blueprint of ectoine metabolism from the genome of the industrial producer Halomonas elongata DSM 2581 T. Environ Microbiol 2011;13:1973–1994 [CrossRef][PubMed]
    [Google Scholar]
  3. Ventosa A, Nieto JJ, Oren A. Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 1998;62:504–544[PubMed]
    [Google Scholar]
  4. Walderhaug MO, Dosch DC, Epstein W. Potassium transport in bacteria. Ion Transport in Prokaryotes 1987;85–130
    [Google Scholar]
  5. Imhoff JF. Osmotic adaptation in halophilic and halotolerant. In Vreeland RH, Hochstein LI. (editors) The Biology of Halophilic Bacteria Boca Raton: CRC Press; 1993; pp.211–254
    [Google Scholar]
  6. Elmore MJ, Lamb AJ, Ritchie GY, Douglas RM, Munro A et al. Activation of potassium efflux from Escherichia coli by glutathione metabolites. Mol Microbiol 1990;4:405–412 [CrossRef][PubMed]
    [Google Scholar]
  7. Radchenko MV, Tanaka K, Waditee R, Oshimi S, Matsuzaki Y et al. Potassium/proton antiport system of Escherichia coli. J Biol Chem 2006;281:19822–19829 [CrossRef][PubMed]
    [Google Scholar]
  8. Benito B, Garciadeblás B, Rodríguez-Navarro A. Potassium- or sodium-efflux ATPase, a key enzyme in the evolution of fungi. Microbiology 2002;148:933–941 [CrossRef][PubMed]
    [Google Scholar]
  9. Radchenko MV, Waditee R, Oshimi S, Fukuhara M, Takabe T et al. Cloning, functional expression and primary characterization of Vibrio parahaemolyticus K+/H+ antiporter genes in Escherichia coli. Mol Microbiol 2006;59:651–663 [CrossRef][PubMed]
    [Google Scholar]
  10. Quinn MJ, Resch CT, Sun J, Lind EJ, Dibrov P et al. NhaP1 is a K+(Na+)/H+ antiporter required for growth and internal pH homeostasis of Vibrio cholerae at low extracellular pH. Microbiology 2012;158:1094–1105 [CrossRef][PubMed]
    [Google Scholar]
  11. Epstein W. The roles and regulation of potassium in bacteria. Prog Nucleic Acid Res Mol Biol 2003;75:293–320[PubMed]
    [Google Scholar]
  12. Naismith JH, Booth IR. Bacterial mechanosensitive channels-MscS: evolution's solution to creating sensitivity in function. Annu Rev Biophys 2012;41:157–177 [CrossRef][PubMed]
    [Google Scholar]
  13. Nomura T, Sokabe M, Yoshimura K. Voltage-dependent inactivation of MscS occurs independently of the positively charged residues in the transmembrane domain. Biomed Res Int 2016;2016:1–6 [CrossRef][PubMed]
    [Google Scholar]
  14. Li Y, Moe PC, Chandrasekaran S, Booth IR, Blount P. Ionic regulation of MscK, a mechanosensitive channel from Escherichia coli. EMBO J 2002;21:5323–5330 [CrossRef][PubMed]
    [Google Scholar]
  15. Miller S, Bartlett W, Chandrasekaran S, Simpson S, Edwards M et al. Domain organization of the MscS mechanosensitive channel of Escherichia coli. EMBO J 2003;22:36–46 [CrossRef][PubMed]
    [Google Scholar]
  16. McLaggan D, Jones MA, Gouesbet G, Levina N, Lindey S et al. Analysis of the kefA2 mutation suggests that KefA is a cation-specific channel involved in osmotic adaptation in Escherichia coli. Mol Microbiol 2002;43:521–536 [CrossRef][PubMed]
    [Google Scholar]
  17. Nakamura T, Tokuda H, Unemoto T. K+/H+ antiporter functions as a regulator of cytoplasmic pH in a marine bacterium, Vibrio alginolyticus. Biochimica et Biophysica Acta (BBA) - Biomembranes 1984;776:330–336 [CrossRef]
    [Google Scholar]
  18. Resch CT, Winogrodzki JL, Patterson CT, Lind EJ, Quinn MJ et al. The putative Na+/H+ antiporter of Vibrio cholerae, Vc-NhaP2, mediates the specific K+/H+ exchange in vivo. Biochemistry 2010;49:2520–2528 [CrossRef][PubMed]
    [Google Scholar]
  19. Swartz TH, Ikewada S, Ishikawa O, Ito M, Krulwich TA. The Mrp system: a giant among monovalent cation/proton antiporters?. Extremophiles 2005;9:345–354 [CrossRef][PubMed]
    [Google Scholar]
  20. Ito M, Morino M, Krulwich TA. Mrp Antiporters Have Important Roles in Diverse Bacteria and Archaea. Front Microbiol 2017;8:2325 [CrossRef][PubMed]
    [Google Scholar]
  21. Hamamoto T, Hashimoto M, Hino M, Kitada M, Seto Y et al. Characterization of a gene responsible for the Na+/H+ antiporter system of alkalophilic Bacillus species strain C-125. Mol Microbiol 1994;14:939–946 [CrossRef][PubMed]
    [Google Scholar]
  22. Morino M, Natsui S, Swartz TH, Krulwich TA, Ito M. Single gene deletions of mrpA to mrpG and mrpE point mutations affect activity of the Mrp Na+/H+ antiporter of alkaliphilic Bacillus and formation of hetero-oligomeric Mrp complexes. J Bacteriol 2008;190:4162–4172 [CrossRef][PubMed]
    [Google Scholar]
  23. Yamaguchi T, Tsutsumi F, Putnoky P, Fukuhara M, Nakamura T. pH-dependent regulation of the multi-subunit cation/proton antiporter Pha1 system from Sinorhizobium meliloti. Microbiology 2009;155:2750–2756 [CrossRef][PubMed]
    [Google Scholar]
  24. Aagesen AM, Schubiger CB, Hobson EC, Dibrov P, Häse CC. Effects of chromosomal deletion of the operon encoding the multiple resistance and pH-related antiporter in Vibrio cholerae. Microbiology 2016;162:2147–2158 [CrossRef][PubMed]
    [Google Scholar]
  25. Cheng B, Meng Y, Cui Y, Li C, Tao F et al. Alkaline Response of a Halotolerant Alkaliphilic Halomonas Strain and Functional Diversity of Its Na+(K+)/H+ Antiporters. J Biol Chem 2016;291:26056–26065 [CrossRef][PubMed]
    [Google Scholar]
  26. Shnaiderman R, Avi-Dor Y. The uptake and extrusion of salts by the halotolerant bacterium, Ba1. Arch Biochem Biophys 1982;213:177–185 [CrossRef][PubMed]
    [Google Scholar]
  27. Yang C, Wang Z, Li Y, Niu Y, Du M et al. Metabolic versatility of halotolerant and alkaliphilic strains of Halomonas isolated from alkaline black liquor. Bioresour Technol 2010;101:6778–6784 [CrossRef][PubMed]
    [Google Scholar]
  28. Padan E, Bibi E, Ito M, Krulwich TA. Alkaline pH homeostasis in bacteria: new insights. Biochim Biophys Acta 2005;1717:67–88 [CrossRef][PubMed]
    [Google Scholar]
  29. Krulwich TA, Sachs G, Padan E. Molecular aspects of bacterial pH sensing and homeostasis. Nat Rev Microbiol 2011;9:330–343 [CrossRef][PubMed]
    [Google Scholar]
  30. Krulwich TA, Liu J, Morino M, Fujisawa M, Ito M et al. Adaptive mechanisms of extreme alkaliphiles. Springer Japan 2011
    [Google Scholar]
  31. Wei Y, Liu J, Ma Y, Krulwich TA. Three putative cation/proton antiporters from the soda lake alkaliphile Alkalimonas amylolytica N10 complement an alkali-sensitive Escherichia coli mutant. Microbiology 2007;153:2168–2179 [CrossRef][PubMed]
    [Google Scholar]
  32. Mesbah NM, Cook GM, Wiegel J. The halophilic alkalithermophile Natranaerobius thermophilus adapts to multiple environmental extremes using a large repertoire of Na(K)/H antiporters. Mol Microbiol 2009;74:270–281 [CrossRef][PubMed]
    [Google Scholar]
  33. Nakamura T, Kawasaki S, Unemoto T. Roles of K+ and Na+ in pH homeostasis and growth of the marine bacterium Vibrio alginolyticus. J Gen Microbiol 1992;138:1271–1276 [CrossRef][PubMed]
    [Google Scholar]
  34. Kraegeloh A, Kunte HJ. Novel insights into the role of potassium for osmoregulation in Halomonas elongata. Extremophiles 2002;6:453–462 [CrossRef][PubMed]
    [Google Scholar]
  35. Ken-Dror S, Preger R, Avi-Dor Y. Functional characterization of the uncoupler-insensitive Na+ pump of the halotolerant bacterium, Ba1. Arch Biochem Biophys 1986;244:122–127 [CrossRef][PubMed]
    [Google Scholar]
  36. Berrier C, Besnard M, Ajouz B, Coulombe A, Ghazi A. Multiple mechanosensitive ion channels from Escherichia coli, activated at different thresholds of applied pressure. J Membr Biol 1996;151:175–187 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000784
Loading
/content/journal/micro/10.1099/mic.0.000784
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error