1887

Abstract

H-NS is an abundant nucleoid-associated protein in the enterobacteria that mediates both chromatin compaction and transcriptional silencing of numerous genes, especially those that have been acquired by horizontal transfer or that are involved in virulence functions. With two dimerization domains (N-terminal and central) and a C-terminal DNA-binding domain, the 15 kDa H-NS polypeptide can assemble as long polymeric filaments on DNA, and mutations in any of the three domains confer a dominant-negative phenotype in vivo by a subunit-poisoning mechanism. Here we confirm that several of these mutants [L26P, I119T and a truncation beyond residue 92(Δ93)] are also dominant-negative in vitro, in that they reverse the inhibition imposed by native H-NS in two different transcription assay formats (initiation+elongation, or elongation alone). On the other hand, another dominant-negative truncation mutant Δ64 (which possesses only the protein's N-terminal domain) per se completely and unexpectedly inhibited transcription in both assay formats. The Hha protein, which is a paralogue of H-NS and resembles its isolated N-terminal domain, also behaved like Δ64 as an inhibitor of transcription in vitro. We propose that under certain growth conditions, Escherichia coli RNA polymerase may be the direct inhibitory target of Hha, and that this effect is experimentally mimicked by the isolated N-terminal domain of H-NS.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000780
2019-02-06
2019-10-19
Loading full text...

Full text loading...

References

  1. Ali Azam T, Iwata A, Nishimura A, Ueda S, Ishihama A. Growth phase-dependent variation in protein composition of the Escherichia coli nucleoid. J Bacteriol 1999;181:6361–6370[PubMed]
    [Google Scholar]
  2. Schmidt A, Kochanowski K, Vedelaar S, Ahrné E, Volkmer B et al. The quantitative and condition-dependent Escherichia coli proteome. Nat Biotechnol 2016;34:104–110 [CrossRef][PubMed]
    [Google Scholar]
  3. Ali SS, Xia B, Liu J, Navarre WW. Silencing of foreign DNA in bacteria. Curr Opin Microbiol 2012;15:175–181 [CrossRef][PubMed]
    [Google Scholar]
  4. Ishihama A. The nucleoid; an overview. EcoSal Plus 2013
    [Google Scholar]
  5. Landick R, Wade JT, Grainger DC. H-NS and RNA polymerase: a love-hate relationship?. Curr Opin Microbiol 2015;24:53–59 [CrossRef][PubMed]
    [Google Scholar]
  6. Winardhi RS, Yan J, Kenney LJ. H-NS regulates gene expression and compacts the nucleoid: insights from single-molecule experiments. Biophys J 2015;109:1321–1329 [CrossRef][PubMed]
    [Google Scholar]
  7. Dorman CJ. H-NS-like nucleoid-associated proteins, mobile genetic elements and horizontal gene transfer in bacteria. Plasmid 2014;75:1–11 [CrossRef][PubMed]
    [Google Scholar]
  8. Grainger DC. Structure and function of bacterial H-NS protein. Biochem Soc Trans 2016;44:1561–1569 [CrossRef][PubMed]
    [Google Scholar]
  9. Browning DF, Grainger DC, Busby SJ. Effects of nucleoid-associated proteins on bacterial chromosome structure and gene expression. Curr Opin Microbiol 2010;13:773–780 [CrossRef][PubMed]
    [Google Scholar]
  10. Singh K, Milstein JN, Navarre WW. Xenogeneic silencing and Its impact on bacterial genomes. Annu Rev Microbiol 2016;70:199–213 [CrossRef][PubMed]
    [Google Scholar]
  11. Badaut C, Williams R, Arluison V, Bouffartigues E, Robert B et al. The degree of oligomerization of the H-NS nucleoid structuring protein is related to specific binding to DNA. J Biol Chem 2002;277:41657–41666 [CrossRef][PubMed]
    [Google Scholar]
  12. Arold ST, Leonard PG, Parkinson GN, Ladbury JE. H-NS forms a superhelical protein scaffold for DNA condensation. Proc Natl Acad Sci USA 2010;107:15728–15732 [CrossRef][PubMed]
    [Google Scholar]
  13. Giangrossi M, Wintraecken K, Spurio R, de Vries R. Probing the relation between protein–protein interactions and DNA binding for a linker mutant of the bacterial nucleoid protein H-NS. Biochim Biophys Acta 1844;2014:339–345
    [Google Scholar]
  14. Saxena S, Gowrishankar J. Modulation of Rho-dependent transcription termination in Escherichia coli by the H-NS family of proteins. J Bacteriol 2011;193:3832–3841 [CrossRef][PubMed]
    [Google Scholar]
  15. Zhang A, Rimsky S, Reaban ME, Buc H, Belfort M. Escherichia coli protein analogs StpA and H-NS: regulatory loops, similar and disparate effects on nucleic acid dynamics. EMBO J 1996;15:1340–1349 [CrossRef][PubMed]
    [Google Scholar]
  16. Sonden B, Uhlin BE. Coordinated and differential expression of histone-like proteins in Escherichia coli: regulation and function of the H-NS analog StpA. EMBO J 1996;15:4970–4980 [CrossRef][PubMed]
    [Google Scholar]
  17. Bouffartigues E, Buckle M, Badaut C, Travers A, Rimsky S. H-NS cooperative binding to high-affinity sites in a regulatory element results in transcriptional silencing. Nat Struct Mol Biol 2007;14:441–448 [CrossRef][PubMed]
    [Google Scholar]
  18. Lang B, Blot N, Bouffartigues E, Buckle M, Geertz M et al. High-affinity DNA binding sites for H-NS provide a molecular basis for selective silencing within proteobacterial genomes. Nucleic Acids Res 2007;35:6330–6337 [CrossRef][PubMed]
    [Google Scholar]
  19. Kahramanoglou C, Seshasayee AS, Prieto AI, Ibberson D, Schmidt S et al. Direct and indirect effects of H-NS and Fis on global gene expression control in Escherichia coli. Nucleic Acids Res 2011;39:2073–2091 [CrossRef][PubMed]
    [Google Scholar]
  20. Gao Y, Foo YH, Winardhi RS, Tang Q, Yan J et al. Charged residues in the H-NS linker drive DNA binding and gene silencing in single cells. Proc Natl Acad Sci USA 2017;114:12560–12565 [CrossRef][PubMed]
    [Google Scholar]
  21. Singh SS, Singh N, Bonocora RP, Fitzgerald DM, Wade JT et al. Widespread suppression of intragenic transcription initiation by H-NS. Genes Dev 2014;28:214–219 [CrossRef][PubMed]
    [Google Scholar]
  22. Lamberte LE, Baniulyte G, Singh SS, Stringer AM, Bonocora RP et al. Horizontally acquired AT-rich genes in Escherichia coli cause toxicity by sequestering RNA polymerase. Nat Microbiol 2017;2:16249 [CrossRef][PubMed]
    [Google Scholar]
  23. Wade JT, Grainger DC. Spurious transcription and its impact on cell function. Transcription 2018;9:182–189 [CrossRef][PubMed]
    [Google Scholar]
  24. Ueguchi C, Mizuno T. The Escherichia coli nucleoid protein H-NS functions directly as a transcriptional repressor. EMBO J 1993;12:1039–1046 [CrossRef][PubMed]
    [Google Scholar]
  25. Rimsky S, Zuber F, Buckle M, Buc H. A molecular mechanism for the repression of transcription by the H-NS protein. Mol Microbiol 2001;42:1311–1323 [CrossRef][PubMed]
    [Google Scholar]
  26. Dole S, Nagarajavel V, Schnetz K. The histone-like nucleoid structuring protein H-NS represses the Escherichia coli bgl operon downstream of the promoter. Mol Microbiol 2004;52:589–600 [CrossRef][PubMed]
    [Google Scholar]
  27. Harinarayanan R, Gowrishankar J. Host factor titration by chromosomal R-loops as a mechanism for runaway plasmid replication in transcription termination-defective mutants of Escherichia coli. J Mol Biol 2003;332:31–46 [CrossRef][PubMed]
    [Google Scholar]
  28. Peters JM, Mooney RA, Grass JA, Jessen ED, Tran F et al. Rho and NusG suppress pervasive antisense transcription in Escherichia coli. Genes Dev 2012;26:2621–2633 [CrossRef][PubMed]
    [Google Scholar]
  29. Kotlajich MV, Hron DR, Boudreau BA, Sun Z, Lyubchenko YL et al. Bridged filaments of histone-like nucleoid structuring protein pause RNA polymerase and aid termination in bacteria. Elife 2015;4:e04970 [CrossRef][PubMed]
    [Google Scholar]
  30. Hommais F, Krin E, Laurent-Winter C, Soutourina O, Malpertuy A et al. Large-scale monitoring of pleiotropic regulation of gene expression by the prokaryotic nucleoid-associated protein, H-NS. Mol Microbiol 2001;40:20–36 [CrossRef][PubMed]
    [Google Scholar]
  31. Williams RM, Rimsky S, Buc H. Probing the structure, function, and interactions of the Escherichia coli H-NS and StpA proteins by using dominant negative derivatives. J Bacteriol 1996;178:4335–4343 [CrossRef][PubMed]
    [Google Scholar]
  32. Ueguchi C, Seto C, Suzuki T, Mizuno T. Clarification of the dimerization domain and its functional significance for the Escherichia coli nucleoid protein H-NS. J Mol Biol 1997;274:145–151 [CrossRef][PubMed]
    [Google Scholar]
  33. Yamanaka Y, Winardhi RS, Yamauchi E, Nishiyama SI, Sowa Y et al. Dimerization site 2 of the bacterial DNA-binding protein H-NS is required for gene silencing and stiffened nucleoprotein filament formation. J Biol Chem 2018;293:9496–9505 [CrossRef][PubMed]
    [Google Scholar]
  34. Kim MS, Bae SH, Yun SH, Lee HJ, Ji SC et al. Cnu, a novel oriC-binding protein of Escherichia coli. J Bacteriol 2005;187:6998–7008 [CrossRef][PubMed]
    [Google Scholar]
  35. Madrid C, Balsalobre C, García J, Juárez A. The novel Hha/YmoA family of nucleoid-associated proteins: use of structural mimicry to modulate the activity of the H-NS family of proteins. Mol Microbiol 2007;63:7–14 [CrossRef][PubMed]
    [Google Scholar]
  36. Paytubi S, Dietrich M, Queiroz MH, Juárez A. Role of plasmid- and chromosomally encoded Hha proteins in modulation of gene expression in E. coli O157:H7. Plasmid 2013;70:52–60 [CrossRef][PubMed]
    [Google Scholar]
  37. Prieto A, Urcola I, Blanco J, Dahbi G, Muniesa M et al. Tracking bacterial virulence: global modulators as indicators. Sci Rep 2016;6:25973 [CrossRef][PubMed]
    [Google Scholar]
  38. Ali SS, Whitney JC, Stevenson J, Robinson H, Howell PL et al. Structural insights into the regulation of foreign genes in Salmonella by the Hha/H-NS complex. J Biol Chem 2013;288:13356–13369 [CrossRef][PubMed]
    [Google Scholar]
  39. Cordeiro TN, García J, Bernadó P, Millet O, Pons M. A three-protein charge zipper stabilizes a complex modulating bacterial gene silencing. J Biol Chem 2015;290:21200–21212 [CrossRef][PubMed]
    [Google Scholar]
  40. Vivero A, Baños RC, Mariscotti JF, Oliveros JC, García-del Portillo F et al. Modulation of horizontally acquired genes by the Hha-YdgT proteins in Salmonella enterica serovar Typhimurium. J Bacteriol 2008;190:1152–1156 [CrossRef][PubMed]
    [Google Scholar]
  41. Ueda T, Takahashi H, Uyar E, Ishikawa S, Ogasawara N et al. Functions of the Hha and YdgT proteins in transcriptional silencing by the nucleoid proteins, H-NS and StpA, in Escherichia coli. DNA Res 2013;20:263–271 [CrossRef][PubMed]
    [Google Scholar]
  42. Aznar S, Paytubi S, Juárez A. The Hha protein facilitates incorporation of horizontally acquired DNA in enteric bacteria. Microbiology 2013;159:545–554 [CrossRef][PubMed]
    [Google Scholar]
  43. Wang H, Yehoshua S, Ali SS, Navarre WW, Milstein JN. A biomechanical mechanism for initiating DNA packaging. Nucleic Acids Res 2014;42:11921–11927 [CrossRef][PubMed]
    [Google Scholar]
  44. Boudreau BA, Hron DR, Qin L, van der Valk RA, Kotlajich MV et al. StpA and Hha stimulate pausing by RNA polymerase by promoting DNA-DNA bridging of H-NS filaments. Nucleic Acids Res 2018;46:5525–5546 [CrossRef][PubMed]
    [Google Scholar]
  45. Rodríguez S, Nieto JM, Madrid C, Juárez A. Functional replacement of the oligomerization domain of H-NS by the Hha protein of Escherichia coli. J Bacteriol 2005;187:5452–5459 [CrossRef][PubMed]
    [Google Scholar]
  46. García-Contreras R, Zhang XS, Kim Y, Wood TK. Protein translation and cell death: the role of rare tRNAs in biofilm formation and in activating dormant phage killer genes. PLoS One 2008;3:e2394 [CrossRef][PubMed]
    [Google Scholar]
  47. Kim Y, Wood TK. Toxins Hha and CspD and small RNA regulator Hfq are involved in persister cell formation through MqsR in Escherichia coli. Biochem Biophys Res Commun 2010;391:209–213 [CrossRef][PubMed]
    [Google Scholar]
  48. Marimon O, Teixeira JM, Cordeiro TN, Soo VW, Wood TL et al. An oxygen-sensitive toxin-antitoxin system. Nat Commun 2016;7:13634 [CrossRef][PubMed]
    [Google Scholar]
  49. Jaiswal S, Paul P, Padhi C, Ray S, Ryan D et al. The Hha-TomB toxin-antitoxin system shows conditional toxicity and promotes persister cell formation by inhibiting apoptosis-like death in S. Typhimurium. Sci Rep 2016;6:38204 [CrossRef][PubMed]
    [Google Scholar]
  50. Solórzano C, Srikumar S, Canals R, Juárez A, Paytubi S et al. Hha has a defined regulatory role that is not dependent upon H-NS or StpA. Front Microbiol 2015;6:773 [CrossRef][PubMed]
    [Google Scholar]
  51. Miller JH. A Short Course in Bacterial Genetics–A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria Cold Spring Harbor Laboratory Press; 1992
    [Google Scholar]
  52. Dattananda CS, Rajkumari K, Gowrishankar J. Multiple mechanisms contribute to osmotic inducibility of proU operon expression in Escherichia coli: demonstration of two osmoresponsive promoters and of a negative regulatory element within the first structural gene. J Bacteriol 1991;173:7481–7490 [CrossRef][PubMed]
    [Google Scholar]
  53. Gowrishankar J. Identification of osmoresponsive genes in Escherichia coli: evidence for participation of potassium and proline transport systems in osmoregulation. J Bacteriol 1985;164:434–445[PubMed]
    [Google Scholar]
  54. Sardesai AA. Potassium transport and its regulation in Escherichia coli: studies on transcriptional regulation of the kdp operon. Jawaharlal Nehru University, PhD thesis 2000
  55. Saxena S, Gowrishankar J. Modulation of Rho-dependent transcription termination in Escherichia coli by the H-NS family of proteins. J Bacteriol 2011;193:3832–3841 [CrossRef][PubMed]
    [Google Scholar]
  56. Sambrook J, Russell D. Molecular Cloning: A Laboratory Manual, 3rd ed. Cold Spring Harbor Laboratory Press; 2001
    [Google Scholar]
  57. Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 1990;185:60–89[PubMed]
    [Google Scholar]
  58. Pathania A, Sardesai AA. Distinct paths for basic amino acid export in Escherichia coli: YbjE (LysO) mediates export of L-lysine. J Bacteriol 2015;197:2036–2047 [CrossRef][PubMed]
    [Google Scholar]
  59. Vimala A, Harinarayanan R. Transketolase activity modulates glycerol-3-phosphate levels in Escherichia coli. Mol Microbiol 2016;100:263–277 [CrossRef][PubMed]
    [Google Scholar]
  60. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976;72:248–254 [CrossRef][PubMed]
    [Google Scholar]
  61. Mishra S, Sen R. N protein from lambdoid phages transforms NusA into an antiterminator by modulating NusA-RNA polymerase flap domain interactions. Nucleic Acids Res 2015;43:5744–5758 [CrossRef][PubMed]
    [Google Scholar]
  62. Rajkumari K, Kusano S, Ishihama A, Mizuno T, Gowrishankar J. Effects of H-NS and potassium glutamate on sigmaS- and sigma70-directed transcription in vitro from osmotically regulated P1 and P2 promoters of proU in Escherichia coli. J Bacteriol 1996;178:4176–4181 [CrossRef][PubMed]
    [Google Scholar]
  63. Angara RK, Yousuf S, Gupta SK, Ranjan A. An IclR like protein from mycobacteria regulates leuCD operon and induces dormancy-like growth arrest in Mycobacterium smegmatis. Tuberculosis 2018;108:83–92 [CrossRef][PubMed]
    [Google Scholar]
  64. Ueguchi C, Suzuki T, Yoshida T, Tanaka K, Mizuno T. Systematic mutational analysis revealing the functional domain organization of Escherichia coli nucleoid protein H-NS. J Mol Biol 1996;263:149–162 [CrossRef][PubMed]
    [Google Scholar]
  65. Gulvady R, Gao Y, Kenney LJ, Yan J. A single molecule analysis of H-NS uncouples DNA binding affinity from DNA specificity. Nucleic Acids Res 2018;46:10216–10224 [CrossRef][PubMed]
    [Google Scholar]
  66. Rangarajan AA, Schnetz K. Interference of transcription across H-NS binding sites and repression by H-NS. Mol Microbiol 2018;108:226–239 [CrossRef][PubMed]
    [Google Scholar]
  67. Shin M, Lagda AC, Lee JW, Bhat A, Rhee JH et al. Gene silencing by H-NS from distal DNA site. Mol Microbiol 2012;86:707–719 [CrossRef][PubMed]
    [Google Scholar]
  68. Bates SR, Quake SR. Mapping of protein-protein interactions of E. coli RNA polymerase with microfluidic mechanical trapping. PLoS One 2014;9:e91542 [CrossRef][PubMed]
    [Google Scholar]
  69. Dombroski AJ, Walter WA, Record MT, Siegele DA, Gross CA. Polypeptides containing highly conserved regions of transcription initiation factor sigma70 exhibit specificity of binding to promoter DNA. Cell 1992;70:501–512 [CrossRef][PubMed]
    [Google Scholar]
  70. Dombroski AJ, Walter WA, Gross CA. Amino-terminal amino acids modulate sigma-factor DNA-binding activity. Genes Dev 1993;7:2446–2455 [CrossRef][PubMed]
    [Google Scholar]
  71. Shahul Hameed UF, Liao C, Radhakrishnan AK, Huser F, Aljedani SS et al. H-NS uses an autoinhibitory conformational switch for environment-controlled gene silencing. Nucleic Acids Res 2019;47: [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000780
Loading
/content/journal/micro/10.1099/mic.0.000780
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error