1887

Abstract

Knowledge about biofilm-associated antibiotic tolerance mechanisms is warranted in order to develop effective treatments against biofilm infections. We performed a screen of a Streptococcus mutans transposon mutant library for mutants with reduced biofilm-associated antimicrobial tolerance, and found that the spxA1 gene plays a role in tolerance towards gentamicin and other antibiotics such as vancomycin and linezolid. SpxA1 is a regulator of genes involved in the oxidative stress response in S. mutans . The oxidative stress response genes gor and ahpC were found to be up-regulated upon antibiotic treatment of S. mutans wild-type biofilms, but not spxA1 mutant biofilms. The gor gene product catalyses the formation of glutathione which functions as an important antioxidant during oxidative stress, and accordingly biofilm-associated antibiotic tolerance of the spxA1 mutant could be restored by exogenous addition of glutathione. Our results indicate that the oxidative stress response plays a role in biofilm-associated antibiotic tolerance of S. mutans , and add to the on-going debate on the role of reactive oxygen species in antibiotic mediated killing of bacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000773
2019-01-21
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/165/3/334.html?itemId=/content/journal/micro/10.1099/mic.0.000773&mimeType=html&fmt=ahah

References

  1. Takahashi N, Nyvad B. Caries ecology revisited: microbial dynamics and the caries process. Caries Res 2008; 42:409–418 [View Article][PubMed]
    [Google Scholar]
  2. Robbins N, Szilagyi G, Tanowitz HB, Luftschein S, Baum SG. Infective endocarditis caused by Streptococcus mutans. A complication of idiopathic hypertrophic subaortic stenosis. Arch Intern Med 1977; 137:1171–1174[PubMed]
    [Google Scholar]
  3. Elgharably H, Hussain ST, Shrestha NK, Blackstone EH, Pettersson GB. Current hypotheses in cardiac surgery: biofilm in infective endocarditis. Semin Thorac Cardiovasc Surg 2016; 28:56–59 [View Article][PubMed]
    [Google Scholar]
  4. Bowen WH, Koo H. Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. Caries Res 2011; 45:69–86 [View Article][PubMed]
    [Google Scholar]
  5. Banas JA. Virulence properties of Streptococcus mutans. Front Biosci 2004; 9:1267–1277 [View Article][PubMed]
    [Google Scholar]
  6. Kozarov E, Sweier D, Shelburne C, Progulske-Fox A, Lopatin D. Detection of bacterial DNA in atheromatous plaques by quantitative PCR. Microbes Infect 2006; 8:687–693 [View Article][PubMed]
    [Google Scholar]
  7. Bedran TB, Azelmat J, Spolidorio DP, Grenier D. Fibrinogen-induced streptococcus mutans biofilm formation and adherence to endothelial cells. Biomed Res Int 2013; 2013:431465 [View Article][PubMed]
    [Google Scholar]
  8. Nomura R, Naka S, Nemoto H, Inagaki S, Taniguchi K et al. Potential involvement of collagen-binding proteins of Streptococcus mutans in infective endocarditis. Oral Dis 2013; 19:387–393 [View Article][PubMed]
    [Google Scholar]
  9. Jefferson KK. What drives bacteria to produce a biofilm?. FEMS Microbiol Lett 2004; 236:163–173 [View Article][PubMed]
    [Google Scholar]
  10. Ceri H, Olson ME, Stremick C, Read RR, Morck D et al. The calgary biofilm device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 1999; 37:1771–1776[PubMed]
    [Google Scholar]
  11. Rybtke M, Hultqvist LD, Givskov M, Tolker-Nielsen T. Pseudomonas aeruginosa biofilm infections: community structure, antimicrobial tolerance and immune response. J Mol Biol 2015; 427:3628–3645 [View Article][PubMed]
    [Google Scholar]
  12. Nilsson M, Rybtke M, Givskov M, Høiby N, Twetman S et al. The dlt genes play a role in antimicrobial tolerance of Streptococcus mutans biofilms. Int J Antimicrob Agents 2016; 48:298–304 [View Article][PubMed]
    [Google Scholar]
  13. Zuber P. Spx-RNA polymerase interaction and global transcriptional control during oxidative stress. J Bacteriol 2004; 186:1911–1918 [View Article][PubMed]
    [Google Scholar]
  14. Mah TF, Pitts B, Pellock B, Walker GC, Stewart PS et al. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 2003; 426:306–310 [View Article][PubMed]
    [Google Scholar]
  15. Li M, Rigby K, Lai Y, Nair V, Peschel A et al. Staphylococcus aureus mutant screen reveals interaction of the human antimicrobial peptide dermcidin with membrane phospholipids. Antimicrob Agents Chemother 2009; 53:4200–4210 [View Article][PubMed]
    [Google Scholar]
  16. Lau PC, Sung CK, Lee JH, Morrison DA, Cvitkovitch DG. PCR ligation mutagenesis in transformable streptococci: application and efficiency. J Microbiol Methods 2002; 49:193–205 [View Article][PubMed]
    [Google Scholar]
  17. Biswas I, Drake L, Johnson S, Thielen D. Unmarked gene modification in Streptococcus mutans by a cotransformation strategy with a thermosensitive plasmid. Biotechniques 2007; 42:487–490 [View Article][PubMed]
    [Google Scholar]
  18. Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M et al. Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 2000; 146:2395–2407 [View Article][PubMed]
    [Google Scholar]
  19. Kajfasz JK, Rivera-Ramos I, Scott-Anne K, Gregoire S, Abranches J et al. Transcription of Oxidative Stress Genes Is Directly Activated by SpxA1 and, to a Lesser Extent, by SpxA2 in Streptococcus mutans. J Bacteriol 2015; 197:2160–2170 [View Article][PubMed]
    [Google Scholar]
  20. Cury JA, Koo H. Extraction and purification of total RNA from Streptococcus mutans biofilms. Anal Biochem 2007; 365:208–214 [View Article][PubMed]
    [Google Scholar]
  21. Liu C, Worthington RJ, Melander C, Wu H. A new small molecule specifically inhibits the cariogenic bacterium Streptococcus mutans in multispecies biofilms. Antimicrob Agents Chemother 2011; 55:2679–2687 [View Article][PubMed]
    [Google Scholar]
  22. Nilsson M, Christiansen N, Høiby N, Twetman S, Givskov M et al. A mariner transposon vector adapted for mutagenesis in oral streptococci. Microbiologyopen 2014; 3:333–340 [View Article][PubMed]
    [Google Scholar]
  23. Galvão LC, Miller JH, Kajfasz JK, Scott-Anne K, Freires IA et al. Transcriptional and phenotypic characterization of novel Spx-regulated genes in Streptococcus mutans. PLoS One 2015; 10:e0124969 [View Article][PubMed]
    [Google Scholar]
  24. Kajfasz JK, Rivera-Ramos I, Abranches J, Martinez AR, Rosalen PL et al. Two Spx proteins modulate stress tolerance, survival, and virulence in Streptococcus mutans. J Bacteriol 2010; 192:2546–2556 [View Article][PubMed]
    [Google Scholar]
  25. Galvão LC, Rosalen PL, Rivera-Ramos I, Franco GC, Kajfasz JK et al. Inactivation of the spxA1 or spxA2 gene of Streptococcus mutans decreases virulence in the rat caries model. Mol Oral Microbiol 2017; 32:142–153 [View Article][PubMed]
    [Google Scholar]
  26. Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ. A common mechanism of cellular death induced by bactericidal antibiotics. Cell 2007; 130:797–810 [View Article][PubMed]
    [Google Scholar]
  27. Carmel-Harel O, Storz G. Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and saccharomyces cerevisiae responses to oxidative stress. Annu Rev Microbiol 2000; 54:439–461 [View Article][PubMed]
    [Google Scholar]
  28. Higuchi M, Yamamoto Y, Poole LB, Shimada M, Sato Y et al. Functions of two types of NADH oxidases in energy metabolism and oxidative stress of Streptococcus mutans. J Bacteriol 1999; 181:5940–5947[PubMed]
    [Google Scholar]
  29. Krause KM, Serio AW, Kane TR, Connolly LE. Aminoglycosides: an overview. Cold Spring Harb Perspect Med 2016; 6:a027029 [View Article][PubMed]
    [Google Scholar]
  30. Kajfasz JK, Abranches J, Lemos JA. Transcriptome analysis reveals that ClpXP proteolysis controls key virulence properties of Streptococcus mutans. Microbiology 2011; 157:2880–2890 [View Article][PubMed]
    [Google Scholar]
  31. Renzoni A, Andrey DO, Jousselin A, Barras C, Monod A et al. Whole genome sequencing and complete genetic analysis reveals novel pathways to glycopeptide resistance in Staphylococcus aureus. PLoS One 2011; 6:e21577 [View Article][PubMed]
    [Google Scholar]
  32. Kajfasz JK, Mendoza JE, Gaca AO, Miller JH, Koselny KA et al. The Spx regulator modulates stress responses and virulence in Enterococcus faecalis. Infect Immun 2012; 80:2265–2275 [View Article][PubMed]
    [Google Scholar]
  33. Bizzini A, Zhao C, Auffray Y, Hartke A. The Enterococcus faecalis superoxide dismutase is essential for its tolerance to vancomycin and penicillin. J Antimicrob Chemother 2009; 64:1196–1202 [View Article][PubMed]
    [Google Scholar]
  34. Ladjouzi R, Bizzini A, Lebreton F, Sauvageot N, Rincé A et al. Analysis of the tolerance of pathogenic enterococci and Staphylococcus aureus to cell wall active antibiotics. J Antimicrob Chemother 2013; 68:2083–2091 [View Article][PubMed]
    [Google Scholar]
  35. Wang C, Fan J, Niu C, Wang C, Villaruz AE et al. Role of spx in biofilm formation of Staphylococcus epidermidis. FEMS Immunol Med Microbiol 2010; 59:152–160 [View Article][PubMed]
    [Google Scholar]
  36. Dwyer DJ, Collins JJ, Walker GC. Unraveling the physiological complexities of antibiotic lethality. Annu Rev Pharmacol Toxicol 2015; 55:313–332 [View Article][PubMed]
    [Google Scholar]
  37. van Acker H, Coenye T. The role of reactive oxygen species in antibiotic-mediated killing of bacteria. Trends Microbiol 2017; 25:456–466 [View Article][PubMed]
    [Google Scholar]
  38. Antony SJ, Diaz-Vasquez E, Stratton C. Clinical experience with linezolid in the treatment of resistant gram-positive infections. J Natl Med Assoc 2001; 93:386–391[PubMed]
    [Google Scholar]
  39. Que YA, Moreillon P. Infective endocarditis. Nat Rev Cardiol 2011; 8:322–336 [View Article][PubMed]
    [Google Scholar]
  40. Boles BR, Singh PK. Endogenous oxidative stress produces diversity and adaptability in biofilm communities. Proc Natl Acad Sci USA 2008; 105:12503–12508 [View Article][PubMed]
    [Google Scholar]
  41. Ajdić D, McShan WM, McLaughlin RE, Savić G, Chang J et al. Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci USA 2002; 99:14434–14439 [View Article][PubMed]
    [Google Scholar]
  42. Kessler B, de Lorenzo V, Timmis KN. A general system to integrate lacZ fusions into the chromosomes of gram-negative eubacteria: regulation of the Pm promoter of the TOL plasmid studied with all controlling elements in monocopy. Mol Gen Genet 1992; 233:293–301 [View Article][PubMed]
    [Google Scholar]
  43. Leblanc DJ, Lee LN, Abu-Al-Jaibat A. Molecular, genetic, and functional analysis of the basic replicon of pVA380-1, a plasmid of oral streptococcal origin. Plasmid 1992; 28:130–145 [View Article][PubMed]
    [Google Scholar]
  44. Mair RW, Senadheera DB, Cvitkovitch DG. CinA is regulated via ComX to modulate genetic transformation and cell viability in Streptococcus mutans. FEMS Microbiol Lett 2012; 331:44–52 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000773
Loading
/content/journal/micro/10.1099/mic.0.000773
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error