1887

Abstract

The human pathogen Pseudomonas aeruginosa can cause both acute infections and chronic biofilm-based infections. Expression of acute virulence factors is positively regulated by cAMP, whereas biofilm formation is positively regulated by c-di-GMP. We provide evidence that increased levels of cAMP, caused by either a lack of degradation or increased production, inhibit P. aeruginosa biofilm formation. cAMP-mediated inhibition of P. aeruginosa biofilm formation required Vfr, and involved a reduction of the level of c-di-GMP, as well as reduced production of biofilm matrix components. A mutant screen and characterization of defined knockout mutants suggested that a subset of c-di-GMP-degrading phosphodiesterases is involved in cAMP-Vfr-mediated biofilm inhibition in P. aeruginosa .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000772
2019-01-21
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/165/3/324.html?itemId=/content/journal/micro/10.1099/mic.0.000772&mimeType=html&fmt=ahah

References

  1. Holt PS, Misfeldt ML. Alteration of murine immune response by Pseudomonas aeruginosa exotoxin A. Infect Immun 1984;45:227–233[PubMed]
    [Google Scholar]
  2. Jensen , Bjarnsholt T, Phipps R, Rasmussen TB, Calum H et al. Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa. Microbiology 2007;153:1329–1338 [CrossRef][PubMed]
    [Google Scholar]
  3. Kang PJ, Hauser AR, Apodaca G, Fleiszig SM, Wiener-Kronish J et al. Identification of Pseudomonas aeruginosa genes required for epithelial cell injury. Mol Microbiol 1997;24:1249–1262 [CrossRef][PubMed]
    [Google Scholar]
  4. Hahn HP. The type-4 pilus is the major virulence-associated adhesin of Pseudomonas aeruginosa-a review. Gene 1997;192:99–108 [CrossRef][PubMed]
    [Google Scholar]
  5. Hauser AR. The type III secretion system of Pseudomonas aeruginosa: infection by injection. Nat Rev Microbiol 2009;7:654–665 [CrossRef][PubMed]
    [Google Scholar]
  6. Keller L, Surette MG. Communication in bacteria: an ecological and evolutionary perspective. Nat Rev Microbiol 2006;4:249–258 [CrossRef][PubMed]
    [Google Scholar]
  7. Albus AM, Pesci EC, Runyen-Janecky LJ, West SE, Iglewski BH. Vfr controls quorum sensing in Pseudomonas aeruginosa. J Bacteriol 1997;179:3928–3935 [CrossRef][PubMed]
    [Google Scholar]
  8. Beatson SA, Whitchurch CB, Sargent JL, Levesque RC, Mattick JS. Differential regulation of twitching motility and elastase production by Vfr in Pseudomonas aeruginosa. J Bacteriol 2002;184:3605–3613 [CrossRef][PubMed]
    [Google Scholar]
  9. Smith RS, Wolfgang MC, Lory S. An adenylate cyclase-controlled signaling network regulates Pseudomonas aeruginosa virulence in a mouse model of acute pneumonia. Infect Immun 2004;72:1677–1684 [CrossRef][PubMed]
    [Google Scholar]
  10. West SE, Sample AK, Runyen-Janecky LJ. The vfr gene product, required for Pseudomonas aeruginosa exotoxin A and protease production, belongs to the cyclic AMP receptor protein family. J Bacteriol 1994;176:7532–7542 [CrossRef][PubMed]
    [Google Scholar]
  11. Wolfgang MC, Lee VT, Gilmore ME, Lory S. Coordinate regulation of bacterial virulence genes by a novel adenylate cyclase-dependent signaling pathway. Dev Cell 2003;4:253–263 [CrossRef][PubMed]
    [Google Scholar]
  12. Cordes TJ, Worzalla GA, Ginster AM, Forest KT. Crystal structure of the Pseudomonas aeruginosa virulence factor regulator. J Bacteriol 2011;193:4069–4074 [CrossRef][PubMed]
    [Google Scholar]
  13. Fuchs EL, Brutinel ED, Jones AK, Fulcher NB, Urbanowski ML et al. The Pseudomonas aeruginosa Vfr regulator controls global virulence factor expression through cyclic AMP-dependent and -independent mechanisms. J Bacteriol 2010;192:3553–3564 [CrossRef][PubMed]
    [Google Scholar]
  14. Fuchs EL, Brutinel ED, Klem ER, Fehr AR, Yahr TL et al. In vitro and in vivo characterization of the Pseudomonas aeruginosa cyclic AMP (cAMP) phosphodiesterase CpdA, required for cAMP homeostasis and virulence factor regulation. J Bacteriol 2010;192:2779–2790 [CrossRef][PubMed]
    [Google Scholar]
  15. Almblad H, Harrison JJ, Rybtke M, Groizeleau J, Givskov M et al. The cyclic AMP-Vfr signaling pathway in Pseudomonas aeruginosa is inhibited by cyclic Di-GMP. J Bacteriol 2015;197:2190–2200 [CrossRef][PubMed]
    [Google Scholar]
  16. Fulcher NB, Holliday PM, Klem E, Cann MJ, Wolfgang MC. The Pseudomonas aeruginosa Chp chemosensory system regulates intracellular cAMP levels by modulating adenylate cyclase activity. Mol Microbiol 2010;76:889–904 [CrossRef][PubMed]
    [Google Scholar]
  17. Rietsch A, Mekalanos JJ. Metabolic regulation of type III secretion gene expression in Pseudomonas aeruginosa. Mol Microbiol 2006;59:807–820 [CrossRef][PubMed]
    [Google Scholar]
  18. Topal H, Fulcher NB, Bitterman J, Salazar E, Buck J et al. Crystal structure and regulation mechanisms of the CyaB adenylyl cyclase from the human pathogen Pseudomonas aeruginosa. J Mol Biol 2012;416:271–286 [CrossRef][PubMed]
    [Google Scholar]
  19. Tolker-Nielsen T. Pseudomonas aeruginosa biofilm infections: from molecular biofilm biology to new treatment possibilities. APMIS Suppl 2014;138:1–51 [CrossRef][PubMed]
    [Google Scholar]
  20. Rybtke M, Hultqvist LD, Givskov M, Tolker-Nielsen T. Pseudomonas aeruginosa Biofilm Infections: Community Structure, Antimicrobial Tolerance and Immune Response. J Mol Biol 2015;427:3628–3645 [CrossRef][PubMed]
    [Google Scholar]
  21. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science 1999;284:1318–1322 [CrossRef][PubMed]
    [Google Scholar]
  22. Høiby N, Ciofu O, Johansen HK, Song ZJ, Moser C et al. The clinical impact of bacterial biofilms. Int J Oral Sci 2011;3:55–65 [CrossRef][PubMed]
    [Google Scholar]
  23. Borlee BR, Goldman AD, Murakami K, Samudrala R, Wozniak DJ et al. Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix. Mol Microbiol 2010;75:827–842 [CrossRef][PubMed]
    [Google Scholar]
  24. Friedman L, Kolter R. Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. J Bacteriol 2004;186:4457–4465 [CrossRef][PubMed]
    [Google Scholar]
  25. Friedman L, Kolter R. Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol Microbiol 2004;51:675–690 [CrossRef][PubMed]
    [Google Scholar]
  26. O'Toole GA, Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 1998;30:295–304 [CrossRef][PubMed]
    [Google Scholar]
  27. Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS. Extracellular DNA required for bacterial biofilm formation. Science 2002;295:1487 [CrossRef][PubMed]
    [Google Scholar]
  28. Drenkard E. Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes Infect 2003;5:1213–1219 [CrossRef][PubMed]
    [Google Scholar]
  29. Stewart PS. Mechanisms of antibiotic resistance in bacterial biofilms. Int J Med Microbiol 2002;292:107–113 [CrossRef][PubMed]
    [Google Scholar]
  30. Ciofu O, Tolker-Nielsen T, Jensen , Wang H, Høiby N. Antimicrobial resistance, respiratory tract infections and role of biofilms in lung infections in cystic fibrosis patients. Adv Drug Deliv Rev 2015;85:7–23 [CrossRef][PubMed]
    [Google Scholar]
  31. Fazli M, Almblad H, Rybtke ML, Givskov M, Eberl L et al. Regulation of biofilm formation in Pseudomonas and Burkholderia species. Environ Microbiol 2014;16:1961–1981 [CrossRef][PubMed]
    [Google Scholar]
  32. Hengge R. Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 2009;7:263–273 [CrossRef][PubMed]
    [Google Scholar]
  33. Christen M, Kulasekara HD, Christen B, Kulasekara BR, Hoffman LR et al. Asymmetrical distribution of the second messenger c-di-GMP upon bacterial cell division. Science 2010;328:1295–1297 [CrossRef][PubMed]
    [Google Scholar]
  34. Fang X, Gomelsky M. A post-translational, c-di-GMP-dependent mechanism regulating flagellar motility. Mol Microbiol 2010;76:1295–1305 [CrossRef][PubMed]
    [Google Scholar]
  35. Hickman JW, Tifrea DF, Harwood CS. A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc Natl Acad Sci USA 2005;102:14422–14427 [CrossRef][PubMed]
    [Google Scholar]
  36. Simm R, Morr M, Kader A, Nimtz M, Römling U. GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 2004;53:1123–1134 [CrossRef][PubMed]
    [Google Scholar]
  37. Galperin MY. Structural classification of bacterial response regulators: diversity of output domains and domain combinations. J Bacteriol 2006;188:4169–4182 [CrossRef][PubMed]
    [Google Scholar]
  38. Ono K, Oka R, Toyofuku M, Sakaguchi A, Hamada M et al. cAMP signaling affects irreversible attachment during biofilm formation by Pseudomonas aeruginosa PAO1. Microbes Environ 2014;29:104–106 [CrossRef][PubMed]
    [Google Scholar]
  39. Luo Y, Zhao K, Baker AE, Kuchma SL, Coggan KA et al. A hierarchical cascade of second messengers regulates Pseudomonas aeruginosa surface behaviors. MBio 2015;6: [CrossRef][PubMed]
    [Google Scholar]
  40. Lee CK, de Anda J, Baker AE, Bennett RR, Luo Y et al. Multigenerational memory and adaptive adhesion in early bacterial biofilm communities. Proc Natl Acad Sci USA 2018;115:4471–4476 [CrossRef][PubMed]
    [Google Scholar]
  41. Choi KH, Kumar A, Schweizer HP. A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: application for DNA fragment transfer between chromosomes and plasmid transformation. J Microbiol Methods 2006;64:391–397 [CrossRef][PubMed]
    [Google Scholar]
  42. Hmelo LR, Borlee BR, Almblad H, Love ME, Randall TE et al. Precision-engineering the Pseudomonas aeruginosa genome with two-step allelic exchange. Nat Protoc 2015;10:1820–1841 [CrossRef][PubMed]
    [Google Scholar]
  43. Choi KH, Schweizer HP. An improved method for rapid generation of unmarked Pseudomonas aeruginosa deletion mutants. BMC Microbiol 2005;5:30 [CrossRef][PubMed]
    [Google Scholar]
  44. Choi KH, Schweizer HP. mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa. Nat Protoc 2006;1:153–161 [CrossRef][PubMed]
    [Google Scholar]
  45. Huber B, Riedel K, Köthe M, Givskov M, Molin S et al. Genetic analysis of functions involved in the late stages of biofilm development in Burkholderia cepacia H111. Mol Microbiol 2002;46:411–426 [CrossRef][PubMed]
    [Google Scholar]
  46. Byrd MS, Sadovskaya I, Vinogradov E, Lu H, Sprinkle AB et al. Genetic and biochemical analyses of the Pseudomonas aeruginosa Psl exopolysaccharide reveal overlapping roles for polysaccharide synthesis enzymes in Psl and LPS production. Mol Microbiol 2009;73:622–638 [CrossRef][PubMed]
    [Google Scholar]
  47. Kulasekara HD. Transposon mutagenesis. Methods Mol Biol 2014;1149:501–519 [CrossRef][PubMed]
    [Google Scholar]
  48. Kulasekara HD, Ventre I, Kulasekara BR, Lazdunski A, Filloux A et al. A novel two-component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes. Mol Microbiol 2005;55:368–380 [CrossRef][PubMed]
    [Google Scholar]
  49. Rybtke M, Berthelsen J, Yang L, Høiby N, Givskov M et al. The LapG protein plays a role in Pseudomonas aeruginosa biofilm formation by controlling the presence of the CdrA adhesin on the cell surface. Microbiologyopen 2015;4:917–930 [CrossRef][PubMed]
    [Google Scholar]
  50. Gjermansen M, Nilsson M, Yang L, Tolker-Nielsen T. Characterization of starvation-induced dispersion in Pseudomonas putida biofilms: genetic elements and molecular mechanisms. Mol Microbiol 2010;75:815–826 [CrossRef][PubMed]
    [Google Scholar]
  51. Colvin KM, Gordon VD, Murakami K, Borlee BR, Wozniak DJ et al. The pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PLoS Pathog 2011;7:e1001264 [CrossRef][PubMed]
    [Google Scholar]
  52. Rybtke MT, Borlee BR, Murakami K, Irie Y, Hentzer M et al. Fluorescence-based reporter for gauging cyclic di-GMP levels in Pseudomonas aeruginosa. Appl Environ Microbiol 2012;78:5060–5069 [CrossRef][PubMed]
    [Google Scholar]
  53. Malone JG, Jaeger T, Manfredi P, Dötsch A, Blanka A et al. The YfiBNR signal transduction mechanism reveals novel targets for the evolution of persistent Pseudomonas aeruginosa in cystic fibrosis airways. PLoS Pathog 2012;8:e1002760 [CrossRef][PubMed]
    [Google Scholar]
  54. Li Y, Xia H, Bai F, Xu H, Yang L et al. Identification of a new gene PA5017 involved in flagella-mediated motility, chemotaxis and biofilm formation in Pseudomonas aeruginosa. FEMS Microbiol Lett 2007;272:188–195 [CrossRef][PubMed]
    [Google Scholar]
  55. Roy AB, Petrova OE, Sauer K. The phosphodiesterase DipA (PA5017) is essential for Pseudomonas aeruginosa biofilm dispersion. J Bacteriol 2012;194:2904–2915 [CrossRef][PubMed]
    [Google Scholar]
  56. An S, Wu J, Zhang LH. Modulation of Pseudomonas aeruginosa biofilm dispersal by a cyclic-Di-GMP phosphodiesterase with a putative hypoxia-sensing domain. Appl Environ Microbiol 2010;76:8160–8173 [CrossRef][PubMed]
    [Google Scholar]
  57. Kuchma SL, Brothers KM, Merritt JH, Liberati NT, Ausubel FM et al. BifA, a cyclic-Di-GMP phosphodiesterase, inversely regulates biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. J Bacteriol 2007;189:8165–8178 [CrossRef][PubMed]
    [Google Scholar]
  58. Li Y, Heine S, Entian M, Sauer K, Frankenberg-Dinkel N. NO-induced biofilm dispersion in Pseudomonas aeruginosa is mediated by an MHYT domain-coupled phosphodiesterase. J Bacteriol 2013;195:3531–3542 [CrossRef][PubMed]
    [Google Scholar]
  59. Huynh TT, McDougald D, Klebensberger J, Al Qarni B, Barraud N et al. Glucose starvation-induced dispersal of Pseudomonas aeruginosa biofilms is cAMP and energy dependent. PLoS One 2012;7:e42874 [CrossRef][PubMed]
    [Google Scholar]
  60. Schleif R. AraC protein, regulation of the l-arabinose operon in Escherichia coli, and the light switch mechanism of AraC action. FEMS Microbiol Rev 2010;34:779–796 [CrossRef][PubMed]
    [Google Scholar]
  61. Kanack KJ, Runyen-Janecky LJ, Ferrell EP, Suh SJ, West SE. Characterization of DNA-binding specificity and analysis of binding sites of the Pseudomonas aeruginosa global regulator, Vfr, a homologue of the Escherichia coli cAMP receptor protein. Microbiology 2006;152:3485–3496 [CrossRef][PubMed]
    [Google Scholar]
  62. Mrázek J, Xie S. Pattern locator: a new tool for finding local sequence patterns in genomic DNA sequences. Bioinformatics 2006;22:3099–3100 [CrossRef][PubMed]
    [Google Scholar]
  63. Yahr TL, Wolfgang MC. Transcriptional regulation of the Pseudomonas aeruginosa type III secretion system. Mol Microbiol 2006;62:631–640 [CrossRef][PubMed]
    [Google Scholar]
  64. Dobay O, Laub K, Stercz B, Kéri A, Balázs B et al. Bicarbonate inhibits bacterial growth and biofilm formation of prevalent cystic fibrosis pathogens. Front Microbiol 2018;9:2245 [CrossRef][PubMed]
    [Google Scholar]
  65. Irie Y, Borlee BR, O'Connor JR, Hill PJ, Harwood CS et al. Self-produced exopolysaccharide is a signal that stimulates biofilm formation in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 2012;109:20632–20636 [CrossRef][PubMed]
    [Google Scholar]
  66. Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ, Schweizer HP. A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 1998;212:77–86 [CrossRef][PubMed]
    [Google Scholar]
  67. Choi KH, Gaynor JB, White KG, Lopez C, Bosio CM et al. A Tn7-based broad-range bacterial cloning and expression system. Nat Methods 2005;2:443–448 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000772
Loading
/content/journal/micro/10.1099/mic.0.000772
Loading

Data & Media loading...

Supplements

Supplementary data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error