1887

Abstract

We studied Escherichia coli BW25113 growth in a complex medium with emphasis on amino acid consumption. The aim was to profile amino acid utilization in acid-hydrolysed casein and a defined nutrient-rich medium and based on these measurements modify the medium for better growth performance. Amino acid depletions in both media caused apparent biomass growth stops that prolonged growth duration. Obtained amino acid consumption values enabled a new defined medium to be formulated, where no growth stops were observed, the specific growth rate was constant, and the provided substrates were fully utilized. Similarly, we modified the acid-hydrolysed casein medium by adding pure amino acids that removed the apparent biomass growth stops. Key to our results was the combination of growth medium analysis and process monitoring data, specifically oxygen partial pressure and produced carbon dioxide that were used to track growth changes. Our findings showed the deficiencies of the nutrient-rich medium and how rational medium design, based on consumption values, removed these shortcomings. The resulting balanced medium gives a high specific growth rate and is suitable for studying E. coli physiology at fast growth.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000742
2018-11-09
2019-09-15
Loading full text...

Full text loading...

References

  1. Zhang J, Greasham R. Chemically defined media for commercial fermentations. Appl Microbiol Biotechnol 1999;51:407–421 [CrossRef]
    [Google Scholar]
  2. Stanbury P, Whitaker A, Hall S. Media for industrial fermentations. Principles of Fermentation Technology, 3rd ed. Butterworth-Heinemann; 2016; pp.213–272
    [Google Scholar]
  3. Zhang J, Reddy J, Buckland B, Greasham R. Toward consistent and productive complex media for industrial fermentations: studies on yeast extract for a recombinant yeast fermentation process. Biotechnol Bioeng 2003;82:640–652 [CrossRef][PubMed]
    [Google Scholar]
  4. Blom EJ, Ridder AN, Lulko AT, Roerdink JB, Kuipers OP. Time-resolved transcriptomics and bioinformatic analyses reveal intrinsic stress responses during batch culture of Bacillus subtilis. PLoS One 2011;6:e27160 [CrossRef][PubMed]
    [Google Scholar]
  5. Li Z, Nimtz M, Rinas U. The metabolic potential of Escherichia coli BL21 in defined and rich medium. Microb Cell Fact 2014;13:45 [CrossRef][PubMed]
    [Google Scholar]
  6. Egli T. Microbial growth and physiology: a call for better craftsmanship. Front Microbiol 2015;6:287 [CrossRef][PubMed]
    [Google Scholar]
  7. Gschaedler A, Boudrant J. Amino acid utilization during batch and continuous cultures of Escherichia coli on a semi-synthetic medium. J Biotechnol 1994;37:235–251 [CrossRef]
    [Google Scholar]
  8. Berney M, Weilenmann HU, Ihssen J, Bassin C, Egli T. Specific growth rate determines the sensitivity of Escherichia coli to thermal, UVA, and solar disinfection. Appl Environ Microbiol 2006;72:2586–2593 [CrossRef][PubMed]
    [Google Scholar]
  9. Baev MV, Baev D, Radek AJ, Campbell JW. Growth of Escherichia coli MG1655 on LB medium: determining metabolic strategy with transcriptional microarrays. Appl Microbiol Biotechnol 2006;71:323–328 [CrossRef][PubMed]
    [Google Scholar]
  10. Sezonov G, Joseleau-Petit D, D'Ari R. Escherichia coli physiology in Luria-Bertani broth. J Bacteriol 2007;189:8746–8749 [CrossRef][PubMed]
    [Google Scholar]
  11. Nahku R, Valgepea K, Lahtvee PJ, Erm S, Abner K et al. Specific growth rate dependent transcriptome profiling of Escherichia coli K12 MG1655 in accelerostat cultures. J Biotechnol 2010;145:60–65 [CrossRef][PubMed]
    [Google Scholar]
  12. Matsumoto Y, Murakami Y, Tsuru S, Ying BW, Yomo T. Growth rate-coordinated transcriptome reorganization in bacteria. BMC Genomics 2013;14:808 [CrossRef][PubMed]
    [Google Scholar]
  13. Valgepea K, Adamberg K, Nahku R, Lahtvee PJ, Arike L et al. Systems biology approach reveals that overflow metabolism of acetate in Escherichia coli is triggered by carbon catabolite repression of acetyl-CoA synthetase. BMC Syst Biol 2010;4:166 [CrossRef][PubMed]
    [Google Scholar]
  14. Schmidt A, Kochanowski K, Vedelaar S, Ahrné E, Volkmer B et al. The quantitative and condition-dependent Escherichia coli proteome. Nat Biotechnol 2016;34:104–110 [CrossRef][PubMed]
    [Google Scholar]
  15. Peebo K, Valgepea K, Maser A, Nahku R, Adamberg K et al. Proteome reallocation in Escherichia coli with increasing specific growth rate. Mol Biosyst 2015;11:1184–1193 [CrossRef][PubMed]
    [Google Scholar]
  16. Paalme T, Elken R, Kahru A, Vanatalu K, Vilu R. The growth rate control in Escherichia coli at near to maximum growth rates: the A-stat approach. Antonie van Leeuwenhoek 1997;71:217–230 [CrossRef][PubMed]
    [Google Scholar]
  17. Kayser A, Weber J, Hecht V, Rinas U. Metabolic flux analysis of Escherichia coli in glucose-limited continuous culture. I. Growth-rate-dependent metabolic efficiency at steady state. Microbiology 2005;151:693–706 [CrossRef][PubMed]
    [Google Scholar]
  18. Ishii N, Nakahigashi K, Baba T, Robert M, Soga T et al. Multiple high-throughput analyses monitor the response of E. coli to perturbations. Science 2007;316:593–597 [CrossRef][PubMed]
    [Google Scholar]
  19. Apples NFC. oranges and unknown fruit. Nat Rev Microbiol 2006;4:876
    [Google Scholar]
  20. Selvarasu S, Ow DS, Lee SY, Lee MM, Oh SK et al. Characterizing Escherichia coli DH5alpha growth and metabolism in a complex medium using genome-scale flux analysis. Biotechnol Bioeng 2009;102:923–934 [CrossRef][PubMed]
    [Google Scholar]
  21. Neidhardt FC, Bloch PL, Smith DF. Culture medium for enterobacteria. J Bacteriol 1974;119:736–747[PubMed]
    [Google Scholar]
  22. Orth JD, Conrad TM, Na J, Lerman JA, Nam H et al. A comprehensive genome-scale reconstruction of Escherichia coli metabolism-2011. Mol Syst Biol 2011;7:535 [CrossRef][PubMed]
    [Google Scholar]
  23. Adadi R, Volkmer B, Milo R, Heinemann M, Shlomi T. Prediction of microbial growth rate versus biomass yield by a metabolic network with kinetic parameters. PLoS Comput Biol 2012;8:e1002575 [CrossRef]
    [Google Scholar]
  24. Neidhardt FC, Umbarger H. Chemical composition of Escherichia coli. In Neidhardt FC, Curtiss III R, Ingraham JL, ECC Lin, Low KB et al. (editors) Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. Washington, DC: American Society for Microbiology; 1996; pp.13–16
    [Google Scholar]
  25. Taymaz-Nikerel H, Borujeni AE, Verheijen PJ, Heijnen JJ, van Gulik WM. Genome-derived minimal metabolic models for Escherichia coli MG1655 with estimated in vivo respiratory ATP stoichiometry. Biotechnol Bioeng 2010;107:369–381 [CrossRef][PubMed]
    [Google Scholar]
  26. McFall E, Newman EB. Amino acids as carbon sources. In Neidhardt FC, Curtiss III R, Ingraham JL, ECC Lin, Low KB et al. (editors) Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. Washington, DC: American Society for Microbiology; 1996; pp.358–379
    [Google Scholar]
  27. Burkovski A, Krämer R. Bacterial amino acid transport proteins: occurrence, functions, and significance for biotechnological applications. Appl Microbiol Biotechnol 2002;58:265–274 [CrossRef][PubMed]
    [Google Scholar]
  28. Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 2000;97:6640–6645 [CrossRef][PubMed]
    [Google Scholar]
  29. Valgepea K, Adamberg K, Vilu R. Decrease of energy spilling in Escherichia coli continuous cultures with rising specific growth rate and carbon wasting. BMC Syst Biol 2011;5:106 [CrossRef][PubMed]
    [Google Scholar]
  30. Dennis PP, Ehrenberg M, Bremer H. Control of rRNA synthesis in Escherichia coli: a systems biology approach. Microbiol Mol Biol Rev 2004;68:639–668 [CrossRef][PubMed]
    [Google Scholar]
  31. Traxler MF, Summers SM, Nguyen HT, Zacharia VM, Hightower GA et al. The global, ppGpp-mediated stringent response to amino acid starvation in Escherichia coli. Mol Microbiol 2008;68:1128–1148 [CrossRef][PubMed]
    [Google Scholar]
  32. Zaslaver A, Mayo AE, Rosenberg R, Bashkin P, Sberro H et al. Just-in-time transcription program in metabolic pathways. Nat Genet 2004;36:486–491 [CrossRef][PubMed]
    [Google Scholar]
  33. Erickson DW, Schink SJ, Patsalo V, Williamson JR, Gerland U et al. A global resource allocation strategy governs growth transition kinetics of Escherichia coli. Nature 2017;551:119–123 [CrossRef][PubMed]
    [Google Scholar]
  34. Yang Y, M Pollard A, Höfler C, Poschet G, Wirtz M et al. Relation between chemotaxis and consumption of amino acids in bacteria. Mol Microbiol 2015;96:1272–1282 [CrossRef][PubMed]
    [Google Scholar]
  35. Majumder A, Fang M, Tsai KJ, Ueguchi C, Mizuno T et al. LeuO expression in response to starvation for branched-chain amino acids. J Biol Chem 2001;276:19046–19051 [CrossRef][PubMed]
    [Google Scholar]
  36. Varik V, Oliveira SR, Hauryliuk V, Tenson T. Composition of the outgrowth medium modulates wake-up kinetics and ampicillin sensitivity of stringent and relaxed Escherichia coli. Sci Rep 2016;6:22308 [CrossRef][PubMed]
    [Google Scholar]
  37. Harrison RG, Todd PW, Rudge SR, Petrides DP. Bioprocess desing and economics. Bioseparation Science and Engineering, 2nd ed. Oxford University Press; 2015; pp.441–510
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000742
Loading
/content/journal/micro/10.1099/mic.0.000742
Loading

Data & Media loading...

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error