1887

Abstract

Two component systems, composed of a receptor histidine kinase and a cytoplasmic response regulator, regulate pivotal cellular processes in microorganisms. Here we describe a new screening procedure for the identification of amino acids that are crucial for the functioning of DesK, a prototypic thermosensor histidine kinase from Bacillus subtilis. This experimental strategy involves random mutagenesis of the membrane sensor domain of the DesK coding sequence, followed by the use of a detection procedure based on changes in the colony morphogenesis that take place during the sporulation programme of B. subtilis. This method permitted us the recovery of mutants defective in DesK temperature sensing. This screening approach could be applied to all histidine kinases of B. subtilis and also to kinases of other bacteria that are functionally expressed in this organism. Moreover, this reporter assay could be expanded to develop reporter assays for a variety of transcriptionally regulated systems.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000741
2018-11-15
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/165/1/90.html?itemId=/content/journal/micro/10.1099/mic.0.000741&mimeType=html&fmt=ahah

References

  1. Parkinson JS, Kofoid EC. Communication modules in bacterial signaling proteins. Annu Rev Genet 1992; 26:71–112 [View Article][PubMed]
    [Google Scholar]
  2. Stock JB, Surette MG, Levit M, Park P. Two-component signal transduction systems: structure-function relationship and mechanism of catalysis. In Hoch JA, Silhavy TJ. (editors) Two-Component Signal Transduction Washington, DC: American Society of Microbiology Press; 1995 pp. 25–51
    [Google Scholar]
  3. Mascher T, Helmann JD, Unden G. Stimulus perception in bacterial signal-transducing histidine kinases. Microbiol Mol Biol Rev 2006; 70:910–938 [View Article][PubMed]
    [Google Scholar]
  4. Aguilar PS, Hernandez-Arriaga AM, Cybulski LE, Erazo AC, de Mendoza D. Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis. Embo J 2001; 20:1681–1691 [View Article][PubMed]
    [Google Scholar]
  5. Cybulski LE, Albanesi D, Mansilla MC, Altabe S, Aguilar PS et al. Mechanism of membrane fluidity optimization: isothermal control of the Bacillus subtilis acyl-lipid desaturase. Mol Microbiol 2002; 45:1379–1388 [View Article][PubMed]
    [Google Scholar]
  6. Porrini L, Cybulski LE, Altabe SG, Mansilla MC, de Mendoza D. Cerulenin inhibits unsaturated fatty acids synthesis in Bacillus subtilis by modifying the input signal of DesK thermosensor. Microbiologyopen 2014; 3:213–224 [View Article][PubMed]
    [Google Scholar]
  7. Albanesi D, Mansilla MC, de Mendoza D. The membrane fluidity sensor DesK of Bacillus subtilis controls the signal decay of its cognate response regulator. J Bacteriol 2004; 186:2655–2663 [View Article][PubMed]
    [Google Scholar]
  8. Cybulski LE, del Solar G, Craig PO, Espinosa M, de Mendoza D. Bacillus subtilis DesR functions as a phosphorylation-activated switch to control membrane lipid fluidity. J Biol Chem 2004; 279:39340–39347 [View Article][PubMed]
    [Google Scholar]
  9. Saita E, Abriata LA, Tsai YT, Trajtenberg F, Lemmin T et al. A coiled coil switch mediates cold sensing by the thermosensory protein DesK. Mol Microbiol 2015; 98:258–271 [View Article][PubMed]
    [Google Scholar]
  10. Abriata LA, Albanesi D, dal Peraro M, de Mendoza D. Signal sensing and transduction by histidine kinases as unveiled through studies on a temperature sensor. Acc Chem Res 2017; 50:1359–1366 [View Article][PubMed]
    [Google Scholar]
  11. Burbulys D, Trach KA, Hoch JA. Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell 1991; 64:545–552 [View Article][PubMed]
    [Google Scholar]
  12. Ohlsen KL, Grimsley JK, Hoch JA. Deactivation of the sporulation transcription factor Spo0A by the Spo0E protein phosphatase. Proc Natl Acad Sci USA 1994; 91:1756–1760 [View Article][PubMed]
    [Google Scholar]
  13. Perego M, Hanstein C, Welsh KM, Djavakhishvili T, Glaser P et al. Multiple protein-aspartate phosphatases provide a mechanism for the integration of diverse signals in the control of development in B. subtilis. Cell 1994; 79:1047–1055 [View Article][PubMed]
    [Google Scholar]
  14. Perego M, Hoch JA. Protein aspartate phosphatases control the output of two-component signal transduction systems. Trends Genet 1996; 12:97–101 [View Article][PubMed]
    [Google Scholar]
  15. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: a Laboratory Manual, 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1989
    [Google Scholar]
  16. Spizizen J. Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate. Proc Natl Acad Sci USA 1958; 44:1072–1078 [View Article][PubMed]
    [Google Scholar]
  17. Schaeffer P, Millet J, Aubert JP. Catabolic repression of bacterial sporulation. Proc Natl Acad Sci USA 1965; 54:704–711 [View Article][PubMed]
    [Google Scholar]
  18. Anagnostopoulos C, Spizizen J. Requirements for transformation in Bacillus subtilis. J Bacteriol 1961; 81:741–746[PubMed]
    [Google Scholar]
  19. Johansson P, Hederstedt L. Organization of genes for tetrapyrrole biosynthesis in gram-positive bacteria. Microbiology 1999; 145:529–538 [View Article][PubMed]
    [Google Scholar]
  20. Härtl B, Wehrl W, Wiegert T, Homuth G, Schumann W. Development of a new integration site within the Bacillus subtilis chromosome and construction of compatible expression cassettes. J Bacteriol 2001; 183:2696–2699 [View Article][PubMed]
    [Google Scholar]
  21. Perego M. Integrational vectors for genetic manipulation in Bacillus subtilis. In Sonenshein AL, Hoch JA, Losick R. (editors) Bacillus subtilis and Other Gram Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics Washington, DC: American Society of Microbiology Press; 1993 pp. 615–624
    [Google Scholar]
  22. Altabe SG, Aguilar P, Caballero GM, de Mendoza D. The Bacillus subtilis acyl lipid desaturase is a delta5 desaturase. J Bacteriol 2003; 185:3228–3231 [View Article][PubMed]
    [Google Scholar]
  23. Martin N, Lombardía E, Altabe SG, de Mendoza D, Mansilla MC. A lipA (yutB) mutant, encoding lipoic acid synthase, provides insight into the interplay between branched-chain and unsaturated fatty acid biosynthesis in Bacillus subtilis. J Bacteriol 2009; 191:7447–7455 [View Article][PubMed]
    [Google Scholar]
  24. Beranová J, Mansilla MC, de Mendoza D, Elhottová D, Konopásek I. Differences in cold adaptation of Bacillus subtilis under anaerobic and aerobic conditions. J Bacteriol 2010; 192:4164–4171 [View Article][PubMed]
    [Google Scholar]
  25. Aguilar PS, Cronan JE, de Mendoza D. A Bacillus subtilis gene induced by cold shock encodes a membrane phospholipid desaturase. J Bacteriol 1998; 180:2194–2200[PubMed]
    [Google Scholar]
  26. Perego M. A peptide export-import control circuit modulating bacterial development regulates protein phosphatases of the phosphorelay. Proc Natl Acad Sci USA 1997; 94:8612–8617 [View Article][PubMed]
    [Google Scholar]
  27. Diaz AR, Core LJ, Jiang M, Morelli M, Chiang CH et al. Bacillus subtilis RapA phosphatase domain interaction with its substrate, phosphorylated Spo0F, and its inhibitor, the PhrA peptide. J Bacteriol 2012; 194:1378–1388 [View Article][PubMed]
    [Google Scholar]
  28. Gallego del Sol F, Marina A. Structural basis of Rap phosphatase inhibition by Phr peptides. PLoS Biol 2013; 11:e1001511 [View Article][PubMed]
    [Google Scholar]
  29. Lederberg J, Lederberg EM. Replica plating and indirect selection of bacterial mutants. J Bacteriol 1952; 63:399–406[PubMed]
    [Google Scholar]
  30. Stephenson K, Hoch JA. Evolution of signalling in the sporulation phosphorelay. Mol Microbiol 2002; 46:297–304 [View Article][PubMed]
    [Google Scholar]
  31. Paredes CJ, Alsaker KV, Papoutsakis ET. A comparative genomic view of clostridial sporulation and physiology. Nat Rev Microbiol 2005; 3:969–978 [View Article][PubMed]
    [Google Scholar]
  32. Cybulski LE, Martín M, Mansilla MC, Fernández A, de Mendoza D. Membrane thickness cue for cold sensing in a bacterium. Curr Biol 2010; 20:1539–1544 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000741
Loading
/content/journal/micro/10.1099/mic.0.000741
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error