Editor's Choice Deletion of MSMEG_1350 in Mycobacterium smegmatis causes loss of epoxy-mycolic acids, fitness alteration at low temperature and resistance to a set of mycobacteriophages Free

Abstract

Mycobacterium smegmatis is intrinsically resistant to thiacetazone, an anti-tubercular thiourea; however we report here that it causes a mild inhibition in growth in liquid medium. Since mycolic acid biosynthesis was affected, we cloned and expressed Mycobacterium smegmatis mycolic acid methyltransferases, postulated as targets for thiacetazone in other mycobacterial species. During this analysis we identified MSMEG_1350 as the methyltransferase involved in epoxy mycolic acid synthesis since its deletion led to their total loss. Phenotypic characterization of the mutant strain showed colony morphology alterations at all temperatures, reduced growth and a slightly increased susceptibility to SDS, lipophilic and large hydrophilic drugs at 20 °C with little effect at 37 °C. No changes were detected between parental and mutant strains in biofilm formation, sliding motility or sedimentation rate. Intriguingly, we found that several mycobacteriophages severely decreased their ability to form plaques in the mutant strain. Taken together our results prove that, in spite of being a minor component of the mycolic acid pool, epoxy-mycolates are required for a proper assembly and functioning of the cell envelope. Further studies are warranted to decipher the role of epoxy-mycolates in the M. smegmatis cell envelope.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000734
2018-10-12
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/164/12/1567.html?itemId=/content/journal/micro/10.1099/mic.0.000734&mimeType=html&fmt=ahah

References

  1. Pawełczyk J, Kremer L. The molecular genetics of mycolic acid biosynthesis. Microbiol Spectr 2014; 2:MGM2-0003–2-2013 [View Article]
    [Google Scholar]
  2. Barkan D, Liu Z, Sacchettini JC, Glickman MS. Mycolic acid cyclopropanation is essential for viability, drug resistance, and cell wall integrity of Mycobacterium tuberculosis. Chem Biol 2009; 16:499–509 [View Article][PubMed]
    [Google Scholar]
  3. Rao V, Gao F, Chen B, Jacobs WR, Glickman MS. Trans-cyclopropanation of mycolic acids on trehalose dimycolate suppresses Mycobacterium tuberculosis -induced inflammation and virulence. J Clin Invest 2006; 116:1660–1667 [View Article][PubMed]
    [Google Scholar]
  4. Huang CC, Smith CV, Glickman MS, Jacobs WR, Sacchettini JC. Crystal structures of mycolic acid cyclopropane synthases from Mycobacterium tuberculosis. J Biol Chem 2002; 277:11559–11569 [View Article][PubMed]
    [Google Scholar]
  5. Glickman MS. The mmaA2 gene of Mycobacterium tuberculosis encodes the distal cyclopropane synthase of the alpha-mycolic acid. J Biol Chem 2003; 278:7844–7849 [View Article][PubMed]
    [Google Scholar]
  6. Glickman MS, Cox JS, Jacobs WR. A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. Mol Cell 2000; 5:717–727 [View Article][PubMed]
    [Google Scholar]
  7. Yuan Y, Lee RE, Besra GS, Belisle JT, Barry CE. Identification of a gene involved in the biosynthesis of cyclopropanated mycolic acids in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 1995; 92:6630–6634 [View Article][PubMed]
    [Google Scholar]
  8. Dubnau E, Lanéelle MA, Soares S, Bénichou A, Vaz T et al. Mycobacterium bovis BCG genes involved in the biosynthesis of cyclopropyl keto- and hydroxy-mycolic acids. Mol Microbiol 1997; 23:313–322 [View Article][PubMed]
    [Google Scholar]
  9. George KM, Yuan Y, Sherman DR, Barry CE. The biosynthesis of cyclopropanated mycolic acids in Mycobacterium tuberculosis. Identification and functional analysis of CMAS-2. J Biol Chem 1995; 270:27292–27298[PubMed]
    [Google Scholar]
  10. Barkan D, Hedhli D, Yan HG, Huygen K, Glickman MS. Mycobacterium tuberculosis lacking all mycolic acid cyclopropanation is viable but highly attenuated and hyperinflammatory in mice. Infect Immun 2012; 80:1958–1968 [View Article][PubMed]
    [Google Scholar]
  11. Dover LG, Alahari A, Gratraud P, Gomes JM, Bhowruth V et al. EthA, a common activator of thiocarbamide-containing drugs acting on different mycobacterial targets. Antimicrob Agents Chemother 2007; 51:1055–1063 [View Article][PubMed]
    [Google Scholar]
  12. Belardinelli JM, Morbidoni HR. Mutations in the essential FAS II β-hydroxyacyl ACP dehydratase complex confer resistance to thiacetazone in Mycobacterium tuberculosis and Mycobacterium kansasii. Mol Microbiol 2012; 86:568–579 [View Article][PubMed]
    [Google Scholar]
  13. Jacobs WR, Snapper SB, Tuckman M, Bloom BR. Mycobacteriophage vector systems. Rev Infect Dis 1989; 11 Suppl 2:S404–S410 [View Article][PubMed]
    [Google Scholar]
  14. Huff J, Czyz A, Landick R, Niederweis M. Taking phage integration to the next level as a genetic tool for mycobacteria. Gene 2010; 468:8–19 [View Article][PubMed]
    [Google Scholar]
  15. Jackson M, Reinaldo Camacho L, Gicquel B, Guilhot C. Gene Replacement and Transposon Delivery Using the Negative Selection Marker sacB. Methods Mol Med 2001; 54:59–75 [View Article][PubMed]
    [Google Scholar]
  16. Cangelosi GA, Palermo CO, Laurent JP, Hamlin AM, Brabant WH. Colony morphotypes on Congo red agar segregate along species and drug susceptibility lines in the Mycobacterium avium-intracellulare complex. Microbiology 1999; 145:1317–1324 [View Article][PubMed]
    [Google Scholar]
  17. Ojha A, Anand M, Bhatt A, Kremer L, Jacobs WR et al. GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell 2005; 123:861–873 [View Article][PubMed]
    [Google Scholar]
  18. Recht J, Martínez A, Torello S, Kolter R. Genetic analysis of sliding motility in Mycobacterium smegmatis. J Bacteriol 2000; 182:4348–4351 [View Article][PubMed]
    [Google Scholar]
  19. Jamet S, Slama N, Domingues J, Laval F, Texier P et al. The non-essential mycolic acid biosynthesis genes hada and hadc contribute to the physiology and fitness of Mycobacterium smegmatis. PLoS One 2015; 10:e0145883 [View Article][PubMed]
    [Google Scholar]
  20. Deshayes C, Bach H, Euphrasie D, Attarian R, Coureuil M et al. MmpS4 promotes glycopeptidolipids biosynthesis and export in Mycobacterium smegmatis. Mol Microbiol 2010; 78:989–1003 [View Article][PubMed]
    [Google Scholar]
  21. Etienne G, Villeneuve C, Billman-Jacobe H, Astarie-Dequeker C, Dupont MA et al. The impact of the absence of glycopeptidolipids on the ultrastructure, cell surface and cell wall properties, and phagocytosis of Mycobacterium smegmatis. Microbiology 2002; 148:3089–3100 [View Article][PubMed]
    [Google Scholar]
  22. Vilchèze C, Morbidoni HR, Weisbrod TR, Iwamoto H, Kuo M et al. Inactivation of the inhA-encoded fatty acid synthase II (FASII) enoyl-acyl carrier protein reductase induces accumulation of the FASI end products and cell lysis of Mycobacterium smegmatis. J Bacteriol 2000; 182:4059–4067 [View Article][PubMed]
    [Google Scholar]
  23. Li X, Wu J, Han J, Hu Y, Mi K. Distinct Responses of Mycobacterium smegmatis to Exposure to Low and High Levels of Hydrogen Peroxide. PLoS One 2015; 10:e0134595 [View Article][PubMed]
    [Google Scholar]
  24. Santos R, de Carvalho CC, Stevenson A, Grant IR, Hallsworth JE. Extraordinary solute-stress tolerance contributes to the environmental tenacity of mycobacteria. Environ Microbiol Rep 2015; 7:746–764 [View Article][PubMed]
    [Google Scholar]
  25. Stella EJ, Franceschelli JJ, Tasselli SE, Morbidoni HR. Analysis of novel mycobacteriophages indicates the existence of different strategies for phage inheritance in mycobacteria. PLoS One 2013; 8:e56384 [View Article][PubMed]
    [Google Scholar]
  26. Hatfull GF, Cresawn SG, Hendrix RW. Comparative genomics of the mycobacteriophages: insights into bacteriophage evolution. Res Microbiol 2008; 159:332–339 [View Article][PubMed]
    [Google Scholar]
  27. Alahari A, Trivelli X, Guérardel Y, Dover LG, Besra GS et al. Thiacetazone, an antitubercular drug that inhibits cyclopropanation of cell wall mycolic acids in mycobacteria. PLoS One 2007; 2:e1343 [View Article][PubMed]
    [Google Scholar]
  28. Alibaud L, Alahari A, Trivelli X, Ojha AK, Hatfull GF et al. Temperature-dependent regulation of mycolic acid cyclopropanation in saprophytic mycobacteria: role of the Mycobacterium smegmatis 1351 gene (MSMEG_1351) in CIS-cyclopropanation of alpha-mycolates. J Biol Chem 2010; 285:21698–21707 [View Article][PubMed]
    [Google Scholar]
  29. Defelipe LA, Osman F, Marti MA, Turjanski AG. Structural and mechanistic comparison of the Cyclopropane Mycolic Acid Synthases (CMAS) protein family of Mycobacterium tuberculosis. Biochem Biophys Res Commun 2018; 498:288–295 [View Article][PubMed]
    [Google Scholar]
  30. Alahari A, Alibaud L, Trivelli X, Gupta R, Lamichhane G et al. Mycolic acid methyltransferase, MmaA4, is necessary for thiacetazone susceptibility in Mycobacterium tuberculosis. Mol Microbiol 2009; 71:1263–1277 [View Article][PubMed]
    [Google Scholar]
  31. Laval F, Haites R, Movahedzadeh F, Lemassu A, Wong CY et al. Investigating the function of the putative mycolic acid methyltransferase UmaA: divergence between the Mycobacterium smegmatis and Mycobacterium tuberculosis proteins. J Biol Chem 2008; 283:1419–1427 [View Article][PubMed]
    [Google Scholar]
  32. Kremer L, Guérardel Y, Gurcha SS, Locht C, Besra GS. Temperature-induced changes in the cell-wall components of Mycobacterium thermoresistibile. Microbiology 2002; 148:3145–3154 [View Article][PubMed]
    [Google Scholar]
  33. Liu J, Barry CE, Besra GS, Nikaido H. Mycolic acid structure determines the fluidity of the mycobacterial cell wall. J Biol Chem 1996; 271:29545–29551 [View Article][PubMed]
    [Google Scholar]
  34. Parish T, Liu J, Nikaido H, Stoker NG. A Mycobacterium smegmatis mutant with a defective inositol monophosphate phosphatase gene homolog has altered cell envelope permeability. J Bacteriol 1997; 179:7827–7833 [View Article][PubMed]
    [Google Scholar]
  35. Chang YY, Cronan JE. Membrane cyclopropane fatty acid content is a major factor in acid resistance of Escherichia coli. Mol Microbiol 1999; 33:249–259 [View Article][PubMed]
    [Google Scholar]
  36. Barry CE, Lee RE, Mdluli K, Sampson AE, Schroeder BG et al. Mycolic acids: structure, biosynthesis and physiological functions. Prog Lipid Res 1998; 37:143–179 [View Article][PubMed]
    [Google Scholar]
  37. Nikaido H, Vaara M. Molecular basis of bacterial outer membrane permeability. Microbiol Rev 1985; 49:1–32[PubMed]
    [Google Scholar]
  38. Deshayes C, Laval F, Montrozier H, Daffé M, Etienne G et al. A glycosyltransferase involved in biosynthesis of triglycosylated glycopeptidolipids in Mycobacterium smegmatis: impact on surface properties. J Bacteriol 2005; 187:7283–7291 [View Article][PubMed]
    [Google Scholar]
  39. Lefebvre C, Boulon R, Ducoux M, Gavalda S, Laval F et al. HadD, a novel fatty acid synthase type II protein, is essential for alpha- and epoxy-mycolic acid biosynthesis and mycobacterial fitness. Sci Rep 2018; 8:6034 [View Article][PubMed]
    [Google Scholar]
  40. Fullner KJ, Hatfull GF. Mycobacteriophage L5 infection of Mycobacterium bovis BCG: implications for phage genetics in the slow-growing mycobacteria. Mol Microbiol 1997; 26:755–766 [View Article][PubMed]
    [Google Scholar]
  41. Swift BM, Gerrard ZE, Huxley JN, Rees CE. Factors affecting phage D29 infection: a tool to investigate different growth states of mycobacteria. PLoS One 2014; 9:e106690 [View Article][PubMed]
    [Google Scholar]
  42. Kumar V, Loganathan P, Sivaramakrishnan G, Kriakov J, Dusthakeer A et al. Characterization of temperate phage Che12 and construction of a new tool for diagnosis of tuberculosis. Tuberculosis 2008; 88:616–623 [View Article][PubMed]
    [Google Scholar]
  43. Donnelly-Wu MK, Jacobs WR, Hatfull GF. Superinfection immunity of mycobacteriophage L5: applications for genetic transformation of mycobacteria. Mol Microbiol 1993; 7:407–417 [View Article][PubMed]
    [Google Scholar]
  44. Lee MH, Hatfull GF. Mycobacteriophage L5 integrase-mediated site-specific integration in vitro. J Bacteriol 1993; 175:6836–6841 [View Article][PubMed]
    [Google Scholar]
  45. Lee S, Kriakov J, Vilcheze C, Dai Z, Hatfull GF et al. Bxz1, a new generalized transducing phage for mycobacteria. FEMS Microbiol Lett 2004; 241:271–276 [View Article][PubMed]
    [Google Scholar]
  46. Carrère-Kremer S, Blaise M, Singh VK, Alibaud L, Tuaillon E et al. A new dehydratase conferring innate resistance to thiacetazone and intra-amoebal survival of Mycobacterium smegmatis. Mol Microbiol 2015; 96:1085–1102 [View Article][PubMed]
    [Google Scholar]
  47. Baba T, Kaneda K, Kusunose E, Kusunose M, Yano I. Molecular species of mycolic acid subclasses in eight strains of Mycobacterium smegmatis. Lipids 1988; 23:1132–1138 [View Article][PubMed]
    [Google Scholar]
  48. Barkan D, Rao V, Sukenick GD, Glickman MS. Redundant function of cmaA2 and mmaA2 in Mycobacterium tuberculosis cis cyclopropanation of oxygenated mycolates. J Bacteriol 2010; 192:3661–3668 [View Article][PubMed]
    [Google Scholar]
  49. Yuan Y, Crane DC, Musser JM, Sreevatsan S, Barry CE. MMAS-1, the branch point between cis- and trans-cyclopropane-containing oxygenated mycolates in Mycobacterium tuberculosis. J Biol Chem 1997; 272:10041–10049 [View Article][PubMed]
    [Google Scholar]
  50. Yuan Y, Barry CE. A common mechanism for the biosynthesis of methoxy and cyclopropyl mycolic acids in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 1996; 93:12828–12833 [View Article][PubMed]
    [Google Scholar]
  51. Behr MA, Schroeder BG, Brinkman JN, Slayden RA, Barry CE. A point mutation in the mma3 gene is responsible for impaired methoxymycolic acid production in Mycobacterium bovis BCG strains obtained after 1927. J Bacteriol 2000; 182:3394–3399 [View Article][PubMed]
    [Google Scholar]
  52. Baba T, Kaneda K, Kusunose E, Kusunose M, Yano I. Thermally adaptive changes of mycolic acids in Mycobacterium smegmatis. J Biochem 1989; 106:81–86 [View Article][PubMed]
    [Google Scholar]
  53. Camacho LR, Constant P, Raynaud C, Laneelle MA, Triccas JA et al. Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier. J Biol Chem 2001; 276:19845–19854 [View Article][PubMed]
    [Google Scholar]
  54. Besra GS, Khoo KH, Belisle JT, McNeil MR, Morris HR et al. New pyruvylated, glycosylated acyltrehaloses from Mycobacterium smegmatis strains, and their implications for phage resistance in mycobacteria. Carbohydr Res 1994; 251:99–114 [View Article][PubMed]
    [Google Scholar]
  55. Chen J, Kriakov J, Singh A, Jacobs WR, Besra GS et al. Defects in glycopeptidolipid biosynthesis confer phage I3 resistance in Mycobacterium smegmatis. Microbiology 2009; 155:4050–4057 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000734
Loading
/content/journal/micro/10.1099/mic.0.000734
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed