1887

Abstract

Antimicrobial peptides (AMPs) have attracted considerable attention because of their multiple and complex mechanisms of action toward resistant bacteria. However, reports have increasingly highlighted how bacteria can escape AMP administration. Here, the molecular mechanisms involved in Escherichia coli resistance to magainin I were investigated through comparative transcriptomics. Sub-inhibitory concentrations of magainin I were used to generate four experimental groups, including magainin I-susceptible E. coli, in the absence (C) and presence of magainin I (CM); and magainin I-resistant E. coli in the absence (R) and presence of magainin I (RM). The total RNA from each sample was extracted; cDNA libraries were constructed and further submitted for Illumina MiSeq sequencing. After RNA-seq data pre-processing and functional annotation, a total of 103 differentially expressed genes (DEGs) were identified, mainly related to bacterial metabolism. Moreover, down-regulation of cell motility and chaperone-related genes was observed in CM and RM, whereas cell communication, acid tolerance and multidrug efflux pump genes (ABC transporter, major facilitator and resistance-nodulation cell division superfamilies) were up-regulated in these same groups. DEGs from the C and R groups are related to basal levels of expression of homeostasis-related genes compared to CM and RM, suggesting that the presence of magainin I is required to change the transcriptomics panel in both C and R E. coli strains. These findings show the complexity of E. coli resistance to magainin I through the rearrangement of several metabolic pathways involved in bacterial physiology and drug response, also providing information on the development of novel antimicrobial strategies targeting resistance-related transcripts and proteins herein described.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000725
2018-10-02
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/164/11/1383.html?itemId=/content/journal/micro/10.1099/mic.0.000725&mimeType=html&fmt=ahah

References

  1. Arias CA, Murray BE. A new antibiotic and the evolution of resistance. N Engl J Med 2015;372:1168–1170 [CrossRef][PubMed]
    [Google Scholar]
  2. Crofts TS, Gasparrini AJ, Dantas G. Next-generation approaches to understand and combat the antibiotic resistome. Nat Rev Microbiol 2017;15:422–434 [CrossRef][PubMed]
    [Google Scholar]
  3. Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 2015;13:42–51 [CrossRef][PubMed]
    [Google Scholar]
  4. Cardoso MH, de Almeida KC, Cândido ES, Murad AM, Dias SC et al. Comparative NanoUPLC-MSE analysis between magainin I-susceptible and -resistant Escherichia coli strains. Sci Rep 2017;7:4197 [CrossRef][PubMed]
    [Google Scholar]
  5. Taneja NK, Ganguly T, Bakaletz LO, Nelson KJ, Dubey P et al. D-alanine modification of a protease-susceptible outer membrane component by the Bordetella pertussis dra locus promotes resistance to antimicrobial peptides and polymorphonuclear leukocyte-mediated killing. J Bacteriol 2013;195:5102–5111 [CrossRef][PubMed]
    [Google Scholar]
  6. Long KS, Poehlsgaard J, Kehrenberg C, Schwarz S, Vester B. The Cfr rRNA methyltransferase confers resistance to Phenicols, Lincosamides, Oxazolidinones, Pleuromutilins, and Streptogramin A antibiotics. Antimicrob Agents Chemother 2006;50:2500–2505 [CrossRef][PubMed]
    [Google Scholar]
  7. Voulgari E, Poulou A, Koumaki V, Tsakris A. Carbapenemase-producing Enterobacteriaceae: now that the storm is finally here, how will timely detection help us fight back?. Future Microbiol 2013;8:27–39 [CrossRef][PubMed]
    [Google Scholar]
  8. Romanowska J, Reuter N, Trylska J. Comparing aminoglycoside binding sites in bacterial ribosomal RNA and aminoglycoside modifying enzymes. Proteins 2013;81:63–80 [CrossRef][PubMed]
    [Google Scholar]
  9. Drenkard E, Ausubel FM. Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 2002;416:740–743 [CrossRef][PubMed]
    [Google Scholar]
  10. Fjell CD, Hiss JA, Hancock RE, Schneider G. Designing antimicrobial peptides: form follows function. Nat Rev Drug Discov 2011;11:37–51 [CrossRef][PubMed]
    [Google Scholar]
  11. Beceiro A, Llobet E, Aranda J, Bengoechea JA, Doumith M et al. Phosphoethanolamine modification of lipid A in colistin-resistant variants of Acinetobacter baumannii mediated by the pmrAB two-component regulatory system. Antimicrob Agents Chemother 2011;55:3370–3379 [CrossRef][PubMed]
    [Google Scholar]
  12. Schmidtchen A, Frick IM, Andersson E, Tapper H, Björck L. Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol Microbiol 2002;46:157–168 [CrossRef][PubMed]
    [Google Scholar]
  13. Sieprawska-Lupa M, Mydel P, Krawczyk K, Wójcik K, Puklo M et al. Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob Agents Chemother 2004;48:4673–4679 [CrossRef][PubMed]
    [Google Scholar]
  14. Ulvatne H, Haukland HH, Samuelsen Ø, Krämer M, Vorland LH. Proteases in Escherichia coli and Staphylococcus aureus confer reduced susceptibility to lactoferricin B. J Antimicrob Chemother 2002;50:461–467 [CrossRef][PubMed]
    [Google Scholar]
  15. Smyth D, Cameron A, Davies MR, McNeilly C, Hafner L et al. DrsG from Streptococcus dysgalactiae subsp. equisimilis inhibits the antimicrobial peptide LL-37. Infect Immun 2014;82:2337–2344 [CrossRef][PubMed]
    [Google Scholar]
  16. Manning AJ, Kuehn MJ. Contribution of bacterial outer membrane vesicles to innate bacterial defense. BMC Microbiol 2011;11:258 [CrossRef][PubMed]
    [Google Scholar]
  17. Fleitas O, Agbale CM, Franco OL. Bacterial resistance to antimicrobial peptides: an evolving phenomenon. Front Biosci 2016;21:1013–1038
    [Google Scholar]
  18. Tzeng YL, Ambrose KD, Zughaier S, Zhou X, Miller YK et al. Cationic antimicrobial peptide resistance in Neisseria meningitidis. J Bacteriol 2005;187:5387–5396 [CrossRef][PubMed]
    [Google Scholar]
  19. Bengoechea JA, Skurnik M. Temperature-regulated efflux pump/potassium antiporter system mediates resistance to cationic antimicrobial peptides in Yersinia. Mol Microbiol 2000;37:67–80 [CrossRef][PubMed]
    [Google Scholar]
  20. Srinivasan VB, Rajamohan G. KpnEF, a new member of the Klebsiella pneumoniae cell envelope stress response regulon, is an SMR-type efflux pump involved in broad-spectrum antimicrobial resistance. Antimicrob Agents Chemother 2013;57:4449–4462 [CrossRef][PubMed]
    [Google Scholar]
  21. Weatherspoon-Griffin N, Yang D, Kong W, Hua Z, Shi Y. The CpxR/CpxA two-component regulatory system up-regulates the multidrug resistance cascade to facilitate Escherichia coli resistance to a model antimicrobial peptide. J Biol Chem 2014;289:32571–32582 [CrossRef][PubMed]
    [Google Scholar]
  22. Maria-Neto S, Cândido ES, Rodrigues DR, de Sousa DA, da Silva EM et al. Deciphering the magainin resistance process of Escherichia coli strains in light of the cytosolic proteome. Antimicrob Agents Chemother 2012;56:1714–1724 [CrossRef][PubMed]
    [Google Scholar]
  23. Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA 1987;84:5449–5453 [CrossRef][PubMed]
    [Google Scholar]
  24. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009;10:57–63 [CrossRef][PubMed]
    [Google Scholar]
  25. de Almeida KC, Lima TB, Motta DO, Silva ON, Magalhães BS et al. Investigating specific bacterial resistance to AMPs by using a magainin I-resistant Escherichia coli model. J Antibiot 2014;67:681–687 [CrossRef][PubMed]
    [Google Scholar]
  26. Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A et al. A survey of best practices for RNA-seq data analysis. Genome Biol 2016;17:13 [CrossRef][PubMed]
    [Google Scholar]
  27. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114–2120 [CrossRef][PubMed]
    [Google Scholar]
  28. McClure R, Balasubramanian D, Sun Y, Bobrovskyy M, Sumby P et al. Computational analysis of bacterial RNA-Seq data. Nucleic Acids Res 2013;41:e140 [CrossRef][PubMed]
    [Google Scholar]
  29. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 2016;44:D457–D462 [CrossRef][PubMed]
    [Google Scholar]
  30. Holden MT, Feil EJ, Lindsay JA, Peacock SJ, Day NP et al. Complete genomes of two clinical Staphylococcus aureus strains: evidence for the rapid evolution of virulence and drug resistance. Proc Natl Acad Sci USA 2004;101:9786–9791 [CrossRef][PubMed]
    [Google Scholar]
  31. Zhao K, Liu M, Burgess RR. Adaptation in bacterial flagellar and motility systems: from regulon members to 'foraging'-like behavior in E. coli. Nucleic Acids Res 2007;35:4441–4452 [CrossRef][PubMed]
    [Google Scholar]
  32. Maisonneuve E, Shakespeare LJ, Jørgensen MG, Gerdes K. Bacterial persistence by RNA endonucleases. Proc Natl Acad Sci USA 2011;108:13206–13211 [CrossRef][PubMed]
    [Google Scholar]
  33. Wood TK, Knabel SJ, Kwan BW. Bacterial persister cell formation and dormancy. Appl Environ Microbiol 2013;79:7116–7121 [CrossRef][PubMed]
    [Google Scholar]
  34. González Barrios AF, Zuo R, Hashimoto Y, Yang L, Bentley WE et al. Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022). J Bacteriol 2006;188:305–316 [CrossRef][PubMed]
    [Google Scholar]
  35. Li YH, Hanna MN, Svensäter G, Ellen RP, Cvitkovitch DG. Cell density modulates acid adaptation in Streptococcus mutans: implications for survival in biofilms. J Bacteriol 2001;183:6875–6884 [CrossRef][PubMed]
    [Google Scholar]
  36. McNeill K, Hamilton IR. Acid tolerance response of biofilm cells of Streptococcus mutans. FEMS Microbiol Lett 2003;221:25–30 [CrossRef][PubMed]
    [Google Scholar]
  37. de Biase D, Tramonti A, Bossa F, Visca P. The response to stationary-phase stress conditions in Escherichia coli: role and regulation of the glutamic acid decarboxylase system. Mol Microbiol 1999;32:1198–1211 [CrossRef][PubMed]
    [Google Scholar]
  38. Ma Z, Gong S, Richard H, Tucker DL, Conway T et al. GadE (YhiE) activates glutamate decarboxylase-dependent acid resistance in Escherichia coli K-12. Mol Microbiol 2003;49:1309–1320 [CrossRef][PubMed]
    [Google Scholar]
  39. van der Ploeg JR, Eichhorn E, Leisinger T. Sulfonate-sulfur metabolism and its regulation in Escherichia coli. Arch Microbiol 2001;176:1–8 [CrossRef][PubMed]
    [Google Scholar]
  40. Dulyayangkul P, Charoenlap N, Srijaruskul K, Mongkolsuk S, Vattanaviboon P. Major facilitator superfamily MfsA contributes to multidrug resistance in emerging nosocomial pathogen Stenotrophomonas maltophilia. J Antimicrob Chemother 2016;71:2990–2991 [CrossRef][PubMed]
    [Google Scholar]
  41. Lomovskaya O, Lewis K. Emr, an Escherichia coli locus for multidrug resistance. Proc Natl Acad Sci USA 1992;89:8938–8942 [CrossRef][PubMed]
    [Google Scholar]
  42. Ranaweera I, Shrestha U, Ranjana KC, Kakarla P, Willmon TM et al. Structural comparison of bacterial multidrug efflux pumps of the major facilitator superfamily. Trends Cell Mol Biol 2015;10:131–140[PubMed]
    [Google Scholar]
  43. Nikaido H. Structure and mechanism of RND-type multidrug efflux pumps. Adv Enzymol Relat Areas Mol Biol 2011;77:1–60[PubMed]
    [Google Scholar]
  44. Blair JM, Bavro VN, Ricci V, Modi N, Cacciotto P et al. AcrB drug-binding pocket substitution confers clinically relevant resistance and altered substrate specificity. Proc Natl Acad Sci USA 2015;112:3511–3516 [CrossRef][PubMed]
    [Google Scholar]
  45. Venter H, Mowla R, Ohene-Agyei T, Ma S. RND-type drug efflux pumps from Gram-negative bacteria: molecular mechanism and inhibition. Front Microbiol 2015;6:377 [CrossRef][PubMed]
    [Google Scholar]
  46. Fitzpatrick AWP, Llabrés S, Neuberger A, Blaza JN, Bai XC et al. Structure of the MacAB-TolC ABC-type tripartite multidrug efflux pump. Nat Microbiol 2017;2:17070 [CrossRef][PubMed]
    [Google Scholar]
  47. Appia-Ayme C, Hall A, Patrick E, Rajadurai S, Clarke TA et al. ZraP is a periplasmic molecular chaperone and a repressor of the zinc-responsive two-component regulator ZraSR. Biochem J 2012;442:85–93 [CrossRef][PubMed]
    [Google Scholar]
  48. Maruthamuthu MK, Ganesh I, Ravikumar S, Hong SH. Evaluation of zraP gene expression characteristics and construction of a lead (Pb) sensing and removal system in a recombinant Escherichia coli. Biotechnol Lett 2015;37:659–664 [CrossRef][PubMed]
    [Google Scholar]
  49. Tao J, Sang Y, Teng Q, Ni J, Yang Y et al. Heat shock proteins IbpA and IbpB are required for NlpI-participated cell division in Escherichia coli. Front Microbiol 2015;6:51 [CrossRef][PubMed]
    [Google Scholar]
  50. Nakamori K, Chiba S, Ito K. Identification of a SecM segment required for export-coupled release from elongation arrest. FEBS Lett 2014;588:3098–3103 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000725
Loading
/content/journal/micro/10.1099/mic.0.000725
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error