1887

Abstract

The in vivo physiological role of the gene cobZ, which encodes precorrin-3B synthase, which catalyzes the initial porphyrin ring contraction step of cobalamin biosynthesis via the cob pathway, has been demonstrated here for the first time. Cobalamin is known to be essential for an early step of bacteriochlorophyll biosynthesis in anoxygenic purple bacteria. The cobZ (cobZRR ) gene of the purple bacterium Rhodospirillum rubrum was localized to a 23.5 kb insert of chromosomal DNA contained on the cosmid pSC4. pSC4 complemented several mutants of bacteriochlorophyll and carotenoid biosynthesis, due to the presence of the bchCX and crtCDEF genes at one end of the cosmid insert, flanking cobZRR . A second gene, citB/tcuB, immediately downstream of cobZRR , shows homologies to both a tricarballylate oxidoreductase (tcuB) and a gene (citB) involved in signal transduction during citrate uptake. CobZRR shows extensive homology to the N-terminal domain of the bifunctional CobZ from Rhodobacter capsulatus, and the R. rubrum citB/tcuB gene is homologous to the CobZ C-terminal domain. A mutant, SERGK25, containing a terminatorless kanamycin interposon inserted into cobZRR , could not grow by anaerobic photosynthesis, but grew normally under dark, aerobic and microaerophilic conditions with succinate and fructose as carbon sources. The anaerobic in vivo activity of CobZ indicates that it does not require oxygen as a substrate. The mutant excreted large amounts of protoporphyrin IX-monomethylester, a brown precursor of bacteriochlorophyll biosynthesis. The mutant was complemented either by the cobZRR gene in trans, or when exogenous cobalamin was added to the medium. A deletion mutant of tcuB/citB did not exhibit the cob phenotype. Thus, a role for tcuB/citB in cobalamin biosynthesis could not be confirmed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000718
2018-09-17
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/164/11/1416.html?itemId=/content/journal/micro/10.1099/mic.0.000718&mimeType=html&fmt=ahah

References

  1. Pollich M, Klug G. Identification and sequence analysis of genes involved in late steps in cobalamin (vitamin B12) synthesis in Rhodobacter capsulatus. J Bacteriol 1995;177:4481–4487 [CrossRef][PubMed]
    [Google Scholar]
  2. Pollich M, Wersig C, Klug G. The bluF gene of Rhodobacter capsulatus is involved in conversion of cobinamide to cobalamin (vitamin B12). J Bacteriol 1996;178:7308–7310 [CrossRef][PubMed]
    [Google Scholar]
  3. Gough SP, Petersen BO, Duus JO. Anaerobic chlorophyll isocyclic ring formation in Rhodobacter capsulatus requires a cobalamin cofactor. Proc Natl Acad Sci USA 2000;97:6908–6913 [CrossRef][PubMed]
    [Google Scholar]
  4. Gibson LC, Hunter CN. The bacteriochlorophyll biosynthesis gene, bchM, of Rhodobacter sphaeroides encodes S-adenosyl-L-methionine: Mg protoporphyrin IX methyltransferase. FEBS Lett 1994;352:127–130 [CrossRef][PubMed]
    [Google Scholar]
  5. Chen GE, Canniffe DP, Hunter CN. Three classes of oxygen-dependent cyclase involved in chlorophyll and bacteriochlorophyll biosynthesis. Proc Natl Acad Sci USA 2017;114:6280–6285 [CrossRef][PubMed]
    [Google Scholar]
  6. Foster MA, Tejerina G, Guest JR, Woods DD. Two enzymic mechanisms for the methylation of homocysteine by extracts of Escherichia coli. Biochem J 1964;92:476–488 [CrossRef][PubMed]
    [Google Scholar]
  7. González JC, Peariso K, Penner-Hahn JE, Matthews RG. Cobalamin-independent methionine synthase from Escherichia coli: a zinc metalloenzyme. Biochemistry 1986;35:12228–12234 [CrossRef][PubMed]
    [Google Scholar]
  8. Cameron B, Briggs K, Pridmore S, Brefort G, Crouzet J. Cloning and analysis of genes involved in coenzyme B12 biosynthesis in Pseudomonas denitrificans. J Bacteriol 1989;171:547–557 [CrossRef][PubMed]
    [Google Scholar]
  9. Cameron B, Blanche F, Rouyez MC, Bisch D, Famechon A et al. Genetic analysis, nucleotide sequence, and products of two Pseudomonas denitrificans cob genes encoding nicotinate-nucleotide: dimethylbenzimidazole phosphoribosyltransferase and cobalamin (5'-phosphate) synthase. J Bacteriol 1991;173:6066–6073 [CrossRef][PubMed]
    [Google Scholar]
  10. Crouzet J, Levy-Schil S, Cameron B, Cauchois L, Rigault S et al. Nucleotide sequence and genetic analysis of a 13.1-kilobase-pair Pseudomonas denitrificans DNA fragment containing five cob genes and identification of structural genes encoding cob(I)alamin adenosyltransferase, cobyric acid synthase, and bifunctional cobinamide kinase-cobinamide phosphate guanylyltransferase. J Bacteriol 1991;173:6074–6087 [CrossRef][PubMed]
    [Google Scholar]
  11. Debussche L, Couder M, Thibaut D, Cameron B, Crouzet J et al. Assay, purification, and characterization of cobaltochelatase, a unique complex enzyme catalyzing cobalt insertion in hydrogenobyrinic acid a,c-diamide during coenzyme B12 biosynthesis in Pseudomonas denitrificans. J Bacteriol 1992;174:7445–7451 [CrossRef][PubMed]
    [Google Scholar]
  12. Jeter RM, Roth JR. Cobalamin (vitamin B12) biosynthetic genes of Salmonella typhimurium. J Bacteriol 1987;169:3189–3198 [CrossRef][PubMed]
    [Google Scholar]
  13. Raux E, Thermes C, Heathcote P, Rambach A, Warren MJ. A role for Salmonella typhimurium cbiK in cobalamin (vitamin B12) and siroheme biosynthesis. J Bacteriol 1997;179:3202–3212 [CrossRef][PubMed]
    [Google Scholar]
  14. Raux E, Lanois A, Warren MJ, Rambach A, Thermes C. Cobalamin (vitamin B12) biosynthesis: identification and characterization of a Bacillus megaterium cobI operon. Biochem J 1998;335:159–166 [CrossRef][PubMed]
    [Google Scholar]
  15. Raux E, Lanois A, Rambach A, Warren MJ, Thermes C. Cobalamin (vitamin B12) biosynthesis: functional characterization of the Bacillus megaterium cbi genes required to convert uroporphyrinogen III into cobyrinic acid a,c-diamide. Biochem J 1998;335:167–173 [CrossRef][PubMed]
    [Google Scholar]
  16. Scott AI. Recent studies of enzymatically controlled steps in B12 biosynthesis. In Chadwick DJ, Akrill K. (editors) The Biosynthesis of the Tetrapyrrole Pigments Ciba Foundation Symposium, John Wiley and Sons; 1994; pp.285–303
    [Google Scholar]
  17. Warren MJ, Raux E, Schubert HL, Escalante-Semerena JC. The biosynthesis of adenosylcobalamin (vitamin B12). Nat Prod Rep 2002;19:390–412 [CrossRef][PubMed]
    [Google Scholar]
  18. Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS. Comparative genomics of the vitamin B12 metabolism and regulation in prokaryotes. J Biol Chem 2003;278:41148–41159 [CrossRef][PubMed]
    [Google Scholar]
  19. Roessner CA, Scott AI. Fine-tuning our knowledge of the anaerobic route to cobalamin (vitamin B12). J Bacteriol 2006;188:7331–7334 [CrossRef][PubMed]
    [Google Scholar]
  20. Warren MJ, Deery E. Vitamin B12 (cobalamin) biosynthesis in purple bacteria. In Hunter CN, Thurnauer MC, Beatty JT. (editors) The Purple Photosynthetic Bacteria Springer Science + Business Media BV; pp.81–95
    [Google Scholar]
  21. McGoldrick HM, Deery E, Warren M, Heathcote P. Cobalamin (vitamin B12) biosynthesis in Rhodobacter capsulatus. Biochem Soc Trans 2002;30:646–648[PubMed]
    [Google Scholar]
  22. McGoldrick HM, Roessner CA, Raux E, Lawrence AD, McLean KJ et al. Identification and characterization of a novel vitamin B12 (cobalamin) biosynthetic enzyme (CobZ) from Rhodobacter capsulatus, containing flavin, heme, and Fe-S cofactors. J Biol Chem 2005;280:1086–1094 [CrossRef][PubMed]
    [Google Scholar]
  23. Moore SJ, Lawrence AD, Biedendieck R, Deery E, Frank S et al. Elucidation of the anaerobic pathway for the corrin component of cobalamin (vitamin B12). Proc Natl Acad Sci USA 2013;110:14906–14911 [CrossRef][PubMed]
    [Google Scholar]
  24. Martens JH, Barg H, Warren MJ, Jahn D. Microbial production of vitamin B12. Appl Microbiol Biotechnol 2002;58:275–285 [CrossRef][PubMed]
    [Google Scholar]
  25. Lewis JA, Escalante-Semerena JC. The FAD-dependent tricarballylate dehydrogenase (TcuA) enzyme of Salmonella enterica converts tricarballylate into cis-aconitate. J Bacteriol 2006;188:5479–5486 [CrossRef][PubMed]
    [Google Scholar]
  26. Lewis JA, Escalante-Semerena JC. Tricarballylate catabolism in Salmonella enterica. The TcuB protein uses 4Fe-4S clusters and heme to transfer electrons from FADH2 in the tricarballylate dehydrogenase (TcuA) enzyme to electron acceptors in the cell membrane. Biochemistry 2007;46:9107–9115 [CrossRef][PubMed]
    [Google Scholar]
  27. Scheu PD, Witan J, Rauschmeier M, Graf S, Liao Y-F et al. CitA/CitB two-component system regulating citrate fermentation in Escherichia coli. J Bacteriol 2012;194:636–645
    [Google Scholar]
  28. Swingley WD, Blankenship RE, Raymond J. Evolutionary relationships among purple photosynthetic bacteria and the origin of proteobacterial photosynthetic systems. In Hunter CN, Thurnauer MC, Beatty JT. (editors) The Purple Photosynthetic Bacteria Springer Science + Business Media BV; 2009; pp.17–29
    [Google Scholar]
  29. Joint Genome Institute 2018; JGI public database of the Rhodospirillum rubrum genome. http://jgi.doe.gov
  30. Hennecke H, Günther I, Binder F. A novel cloning vector for the direct selection of recombinant DNA in E. coli. Gene 1982;19:231–234 [CrossRef][PubMed]
    [Google Scholar]
  31. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: a Laboratory Manual, 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1989
    [Google Scholar]
  32. Cohen-Bazire G, Sistrom WR, Stanier RY. Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Comp Physiol 1957;49:25–68 [CrossRef][PubMed]
    [Google Scholar]
  33. Komori M, Ghosh R, Takaichi S, Hu Y, Mizoguchi T et al. A null lesion in the rhodopin 3,4-desaturase of Rhodospirillum rubrum unmasks a cryptic branch of the carotenoid biosynthetic pathway. Biochemistry 1998;37:8987–8994 [CrossRef][PubMed]
    [Google Scholar]
  34. Saegesser R. Identifikation und Charakterisierung des Photosynthese-Genclusters von Rhodospirillum rubrum. PhD Thesis University of Zurich; 1992
    [Google Scholar]
  35. Sistrom WR. A requirement for sodium in the growth of Rhodopseudomonas spheroides. J Gen Microbiol 1960;22:778–785 [CrossRef][PubMed]
    [Google Scholar]
  36. Ghosh R, Hardmeyer A, Thoenen I, Bachofen R. Optimization of the sistrom culture medium for large-scale batch cultivation of Rhodospirillum rubrum under semiaerobic conditions with maximal yield of photosynthetic membranes. Appl Environ Microbiol 1994;60:1698–1700[PubMed]
    [Google Scholar]
  37. Grammel H, Gilles ED, Ghosh R. Microaerophilic cooperation of reductive and oxidative pathways allows maximal photosynthetic membrane biosynthesis in Rhodospirillum rubrum. Appl Environ Microbiol 2003;69:6577–6586 [CrossRef][PubMed]
    [Google Scholar]
  38. Knauf VC, Nester EW. Wide host range cloning vectors: a cosmid clone bank of an Agrobacterium Ti plasmid. Plasmid 1982;8:45–54 [CrossRef][PubMed]
    [Google Scholar]
  39. Wang G-S, Grammel H, Abou-Aisha K, Sägesser R, Ghosh R. High-level production of the industrial product lycopene by the photosynthetic bacterium Rhodospirillum rubrum. Appl Environ Microbiol 2012;78:7205–7215 [CrossRef][PubMed]
    [Google Scholar]
  40. Deretic V, Chandrasekharappa S, Gill JF, Chatterjee DK, Chakrabarty AM. A set of cassettes and improved vectors for genetic and biochemical characterization of Pseudomonas genes. Gene 1987;57:61–72 [CrossRef][PubMed]
    [Google Scholar]
  41. Mazodier P, Cossart P, Giraud E, Gasser F. Completion of the nucleotide sequence of the central region of Tn5 confirms the presence of three resistance genes. Nucleic Acids Res 1985;13:195–205 [CrossRef][PubMed]
    [Google Scholar]
  42. Simon R, Priefer U, Pühler A. Vector plasmids for in-vivo and in-vitro manipulations of gram-negative bacteria. In Pühler A. (editor) Molecular Genetics of the Bacteria-Plant Interaction Springer-Verlag Berlin Heidelberg; 1983; pp.98–105
    [Google Scholar]
  43. Figurski DH, Helinski DR. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci USA 1979;76:1648–1652 [CrossRef][PubMed]
    [Google Scholar]
  44. Ames BN, Dubin DT. The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid. J Biol Chem 1960;235:769–775[PubMed]
    [Google Scholar]
  45. Jensen SL, Cohen-Bazire G, Nakayama TO, Stanier RY. The path of carotenoid synthesis in a photosynthetic bacterium. Biochim Biophys Acta 1958;29:477–498 [CrossRef][PubMed]
    [Google Scholar]
  46. Davies BH. A novel sequence for phytoene dehydrogenation in Rhodospirillum rubrum. Biochem J 1970;116:93–99 [CrossRef][PubMed]
    [Google Scholar]
  47. Davies BH. Alternative pathways of spirilloxanthin biosynthesis in Rhodospirillum rubrum. Biochem J 1970;116:101–110 [CrossRef][PubMed]
    [Google Scholar]
  48. Armstrong GA, Alberti M, Leach F, Hearst JE. Homology of other photosynthetic gene clusters, and the crt gene products. Nucleotide sequence, organization, and nature of the protein products of the carotenoid biosynthesis gene cluster of Rhodobacter capsulatus. Mol Gen Genet 1989;216:254–268
    [Google Scholar]
  49. Bauer CE, Bollivar DW, Suzuki JY. Genetic analyses of photopigment biosynthesis in eubacteria: a guiding light for algae and plants. J Bacteriol 1993;175:3919–3925 [CrossRef][PubMed]
    [Google Scholar]
  50. Willows RD, Kriegel AM. Biosynthesis of bacteriochlorophylls in purple bacteria. In Hunter CN, Thurnauer MC, Beatty JT. (editors) The Purple Photosynthetic Bacteria Springer Science + Business Media BV; 2009; pp.57–79
    [Google Scholar]
  51. Hunter CN, Coomber SA. Cloning and oxygen-regulated expression of the bacteriochlorophyll biosynthesis genes bchE, B, A and C of Rhodobacter sphaeroides. J Gen Microbiol 1988;134:1491–1497
    [Google Scholar]
  52. Bollivar DW, Suzuki JY, Beatty JT, Dobrowolski JM, Bauer CE. Directed mutational analysis of bacteriochlorophyll a biosynthesis in Rhodobacter capsulatus. J Mol Biol 1994;237:622–640 [CrossRef][PubMed]
    [Google Scholar]
  53. GenBank accession no. AY150801, deposited in November 2002.
  54. Lupo D, Ghosh R. The reaction center H subunit is not required for high levels of light-harvesting complex 1 in Rhodospirillum rubrum mutants. J Bacteriol 2004;186:5585–5595 [CrossRef][PubMed]
    [Google Scholar]
  55. Picorel R, Belanger G, Gingras G. Antenna holochrome B880 of Rhodospirillum rubrum S1. Pigment, phospholipid, and polypeptide composition. Biochemistry 1983;22:2491–2497 [CrossRef]
    [Google Scholar]
  56. van der Rest M, Gingras G. The pigment complement of the photosynthetic reaction center isolated from Rhodospirillum rubrum. J Biol Chem 1974;249:6446–6453[PubMed]
    [Google Scholar]
  57. Falk JE. Porphyrins and Metalloporphyrinsvol. 2 Elsevier Publishing Co.; 1964; pp.232
    [Google Scholar]
  58. Imhof A, Heinzer I. Continuous monitoring of oxygen concentrations in several systems for cultivation of anaerobic bacteria. J Clin Microbiol 1996;34:1646–1648[PubMed]
    [Google Scholar]
  59. Preisig O, Anthamatten D, Hennecke H. Genes for a microaerobically induced oxidase complex in Bradyrhizobium japonicum are essential for a nitrogen-fixing endosymbiosis. Proc Natl Acad Sci USA 1993;90:3309–3313 [CrossRef][PubMed]
    [Google Scholar]
  60. Preisig O, Zufferey R, Thöny-Meyer L, Appleby CA, Hennecke H. A high-affinity cbb3-type cytochrome oxidase terminates the symbiosis-specific respiratory chain of Bradyrhizobium japonicum. J Bacteriol 1996;178:1532–1538 [CrossRef][PubMed]
    [Google Scholar]
  61. Cauthen SE, Pattison JR, Lascelles J. Vitamin B(12) in photosynthetic bacteria and methionine synthesis by Rhodopseudomonas spheroides. Biochem J 1967;102:774–781 [CrossRef][PubMed]
    [Google Scholar]
  62. Layer G, Verfürth K, Mahlitz E, Jahn D. Oxygen-independent coproporphyrinogen-III oxidase HemN from Escherichia coli. J Biol Chem 2002;277:34136–34142 [CrossRef][PubMed]
    [Google Scholar]
  63. Roth JR, Lawrence JG, Bobik TA. Cobalamin (coenzyme B12): synthesis and biological significance. Annu Rev Microbiol 1996;50:137–181 [CrossRef][PubMed]
    [Google Scholar]
  64. Spencer ME, Guest JR. Isolation and properties of fumarate reductase mutants of Escherichia coli. J Bacteriol 1973;114:563–570[PubMed]
    [Google Scholar]
  65. Maklashina E, Berthold DA, Cecchini G. Anaerobic expression of Escherichia coli succinate dehydrogenase: functional replacement of fumarate reductase in the respiratory chain during anaerobic growth. J Bacteriol 1998;180:5989–599[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000718
Loading
/content/journal/micro/10.1099/mic.0.000718
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error