1887

Abstract

Bacteria of the genus Mycoplasma have recently attracted considerable interest as model organisms in synthetic and systems biology. In particular, Mycoplasma pneumoniae is one of the most intensively studied organisms in the field of systems biology. However, the genetic manipulation of these bacteria is often difficult due to the lack of efficient genetic systems and some intrinsic peculiarities such as an aberrant genetic code. One major disadvantage in working with M. pneumoniae is the lack of replicating plasmids that can be used for the complementation of mutants and the expression of proteins. In this study, we have analysed the genomic region around the gene encoding the replication initiation protein, DnaA, and detected putative binding sites for DnaA (DnaA boxes) that are, however, less conserved than in other bacteria. The construction of several plasmids encompassing this region allowed the selection of plasmid pGP2756 that is stably inherited and that can be used for genetic experiments, as shown by the complementation assays with the glpQ gene encoding the glycerophosphoryl diester phosphodiesterase. Plasmid-borne complementation of the glpQ mutant restored the formation of hydrogen peroxide when bacteria were cultivated in the presence of glycerol phosphocholine. Interestingly, the replicating plasmid can also be used in the close relative, Mycoplasma genitalium but not in more distantly related members of the genus Mycoplasma. Thus, plasmid pGP2756 is a valuable tool for the genetic analysis of M. pneumoniae and M. genitalium.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000711
2018-09-25
2019-08-26
Loading full text...

Full text loading...

References

  1. Waites KB, Talkington DF. Mycoplasma pneumoniae and its role as a human pathogen. Clin Microbiol Rev 2004;17:697–728 [CrossRef][PubMed]
    [Google Scholar]
  2. Güell M, van Noort V, Yus E, Chen WH, Leigh-Bell J et al. Transcriptome complexity in a genome-reduced bacterium. Science 2009;326:1268–1271 [CrossRef][PubMed]
    [Google Scholar]
  3. Kühner S, van Noort V, Betts MJ, Leo-Macias A, Batisse C et al. Proteome organization in a genome-reduced bacterium. Science 2009;326:1235–1240 [CrossRef][PubMed]
    [Google Scholar]
  4. Yus E, Maier T, Michalodimitrakis K, van Noort V, Yamada T et al. Impact of genome reduction on bacterial metabolism and its regulation. Science 2009;326:1263–1268 [CrossRef][PubMed]
    [Google Scholar]
  5. Schmidl SR, Gronau K, Pietack N, Hecker M, Becher D et al. The phosphoproteome of the minimal bacterium Mycoplasma pneumoniae: analysis of the complete known Ser/Thr kinome suggests the existence of novel kinases. Mol Cell Proteomics 2010;9:1228–1242 [CrossRef][PubMed]
    [Google Scholar]
  6. Maier T, Schmidt A, Güell M, Kühner S, Gavin AC et al. Quantification of mRNA and protein and integration with protein turnover in a bacterium. Mol Syst Biol 2011;7:511 [CrossRef][PubMed]
    [Google Scholar]
  7. van Noort V, Seebacher J, Bader S, Mohammed S, Vonkova I et al. Cross-talk between phosphorylation and lysine acetylation in a genome-reduced bacterium. Mol Syst Biol 2012;8:571 [CrossRef][PubMed]
    [Google Scholar]
  8. Yus E, Güell M, Vivancos AP, Chen WH, Lluch-Senar M et al. Transcription start site associated RNAs in bacteria. Mol Syst Biol 2012;8:585 [CrossRef][PubMed]
    [Google Scholar]
  9. Lluch-Senar M, Luong K, Lloréns-Rico V, Delgado J, Fang G et al. Comprehensive methylome characterization of Mycoplasma genitalium and Mycoplasma pneumoniae at single-base resolution. PLoS Genet 2013;9:e1003191 [CrossRef][PubMed]
    [Google Scholar]
  10. Lluch-Senar M, Delgado J, Chen WH, Lloréns-Rico V, O'Reilly FJ et al. Defining a minimal cell: essentiality of small ORFs and ncRNAs in a genome-reduced bacterium. Mol Syst Biol 2015;11:780 [CrossRef][PubMed]
    [Google Scholar]
  11. Yus E, Yang JS, Sogues A, Serrano L. A reporter system coupled with high-throughput sequencing unveils key bacterial transcription and translation determinants. Nat Commun 2017;8:368 [CrossRef][PubMed]
    [Google Scholar]
  12. Goldberg AP, Szigeti B, Chew YH, Sekar JA, Roth YD et al. Emerging whole-cell modeling principles and methods. Curr Opin Biotechnol 2018;51:97–102 [CrossRef][PubMed]
    [Google Scholar]
  13. Lartigue C, Vashee S, Algire MA, Chuang RY, Benders GA et al. Creating bacterial strains from genomes that have been cloned and engineered in yeast. Science 2009;325:1693–1696 [CrossRef][PubMed]
    [Google Scholar]
  14. Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang RY et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science 2010;329:52–56 [CrossRef][PubMed]
    [Google Scholar]
  15. Hutchison CA, Chuang RY, Noskov VN, Assad-Garcia N, Deerinck TJ et al. Design and synthesis of a minimal bacterial genome. Science 2016;351:aad6253 [CrossRef][PubMed]
    [Google Scholar]
  16. Atkinson TP, Balish MF, Waites KB. Epidemiology, clinical manifestations, pathogenesis and laboratory detection of Mycoplasma pneumoniae infections. FEMS Microbiol Rev 2008;32:956–973 [CrossRef][PubMed]
    [Google Scholar]
  17. Smith LG. Mycoplasma pneumonia and its complications. Infect Dis Clin North Am 2010;24:57–60 [CrossRef][PubMed]
    [Google Scholar]
  18. Watanabe H, Uruma T, Nakamura H, Aoshiba K. The role of Mycoplasma pneumoniae infection in the initial onset and exacerbations of asthma. Allergy Asthma Proc 2014;35:204–210 [CrossRef][PubMed]
    [Google Scholar]
  19. Houshaymi BM, Miles RJ, Nicholas RA. Oxidation of glycerol differentiates African from European isolates of Mycoplasma mycoides subspecies mycoides SC (small colony). Vet Rec 1997;140:182–183 [CrossRef][PubMed]
    [Google Scholar]
  20. Hames C, Halbedel S, Schilling O, Stülke J. Multiple-mutation reaction: a method for simultaneous introduction of multiple mutations into the glpK gene of Mycoplasma pneumoniae. Appl Environ Microbiol 2005;71:4097–4100 [CrossRef][PubMed]
    [Google Scholar]
  21. Halbedel S, Stülke J. Tools for the genetic analysis of Mycoplasma. Int J Med Microbiol 2007;297:37–44 [CrossRef][PubMed]
    [Google Scholar]
  22. Krishnakumar R, Assad-Garcia N, Benders GA, Phan Q, Montague MG et al. Targeted chromosomal knockouts in Mycoplasma pneumoniae. Appl Environ Microbiol 2010;76:5297–5299 [CrossRef][PubMed]
    [Google Scholar]
  23. Halbedel S, Busse J, Schmidl SR, Stülke J. Regulatory protein phosphorylation in Mycoplasma pneumoniae. A PP2C-type phosphatase serves to dephosphorylate HPr(Ser-P). J Biol Chem 2006;281:26253–26259 [CrossRef][PubMed]
    [Google Scholar]
  24. Cordova CM, Lartigue C, Sirand-Pugnet P, Renaudin J, Cunha RA et al. Identification of the origin of replication of the Mycoplasma pulmonis chromosome and its use in oriC replicative plasmids. J Bacteriol 2002;184:5426–5435 [CrossRef][PubMed]
    [Google Scholar]
  25. Lartigue C, Blanchard A, Renaudin J, Thiaucourt F, Sirand-Pugnet P. Host specificity of mollicutes oriC plasmids: functional analysis of replication origin. Nucleic Acids Res 2003;31:6610–6618 [CrossRef][PubMed]
    [Google Scholar]
  26. Janis C, Lartigue C, Frey J, Wróblewski H, Thiaucourt F et al. Versatile use of oriC plasmids for functional genomics of Mycoplasma capricolum subsp. capricolum. Appl Environ Microbiol 2005;71:2888–2893 [CrossRef][PubMed]
    [Google Scholar]
  27. Sharma S, Citti C, Sagné E, Marenda MS, Markham PF et al. Development and host compatibility of plasmids for two important ruminant pathogens, Mycoplasma bovis and Mycoplasma agalactiae. PLoS One 2015;10:e0119000 [CrossRef][PubMed]
    [Google Scholar]
  28. Maglennon GA, Cook BS, Matthews D, Deeney AS, Bossé JT et al. Development of a self-replicating plasmid system for Mycoplasma hyopneumoniae. Vet Res 2013;44:63 [CrossRef][PubMed]
    [Google Scholar]
  29. Shahid MA, Marenda MS, Markham PF, Noormohammadi AH. Development of an oriC vector for use in Mycoplasma synoviae. J Microbiol Methods 2014;103:70–76 [CrossRef][PubMed]
    [Google Scholar]
  30. Ishag HZA, Xiong Q, Liu M, Feng Z, Shao G. Development of oriC-plasmids for use in Mycoplasma hyorhinis. Sci Rep 2017;7:10596 [CrossRef][PubMed]
    [Google Scholar]
  31. Lee SW, Browning GF, Markham PF. Development of a replicable oriC plasmid for Mycoplasma gallisepticum and Mycoplasma imitans, and gene disruption through homologous recombination in M. gallisepticum. Microbiology 2008;154:2571–2580 [CrossRef][PubMed]
    [Google Scholar]
  32. Matteau D, Pepin ME, Baby V, Gauthier S, Arango Giraldo M et al. Development of oriC-based plasmids for Mesoplasma florum. Appl Environ Microbiol 2017;83:e0337416 [CrossRef][PubMed]
    [Google Scholar]
  33. Speck C, Weigel C, Messer W. From footprint to toeprint: a close-up of the DnaA box, the binding site for the bacterial initiator protein DnaA. Nucleic Acids Res 1997;25:3242–3247 [CrossRef][PubMed]
    [Google Scholar]
  34. Schmidl SR, Otto A, Lluch-Senar M, Piñol J, Busse J et al. A trigger enzyme in Mycoplasma pneumoniae: impact of the glycerophosphodiesterase glpQ on virulence and gene expression. PLoS Pathog 2011;7:e1002263 [CrossRef][PubMed]
    [Google Scholar]
  35. Halbedel S, Hames C, Stülke J. In vivo activity of enzymatic and regulatory components of the phosphoenolpyruvate:sugar phosphotransferase system in Mycoplasma pneumoniae. J Bacteriol 2004;186:7936–7943 [CrossRef][PubMed]
    [Google Scholar]
  36. Tully JG, Taylor-Robinson D, Rose DL, Furr PM, Hawkins DA. Evaluation of culture media for the recovery of Mycoplasma hominis from the human urogenital tract. Sex Transm Dis 1983;10:256[PubMed]
    [Google Scholar]
  37. Pich OQ, Burgos R, Planell R, Querol E, Piñol J. Comparative analysis of antibiotic resistance gene markers in Mycoplasma genitalium: application to studies of the minimal gene complement. Microbiology 2006;152:519–527 [CrossRef][PubMed]
    [Google Scholar]
  38. Labroussaa F, Lebaudy A, Baby V, Gourgues G, Matteau D et al. Impact of donor-recipient phylogenetic distance on bacterial genome transplantation. Nucleic Acids Res 2016;44:8501–8511 [CrossRef][PubMed]
    [Google Scholar]
  39. King KW, Dybvig K. Plasmid transformation of Mycoplasma mycoides subspecies mycoides is promoted by high concentrations of polyethylene glycol. Plasmid 1991;26:108–115 [CrossRef][PubMed]
    [Google Scholar]
  40. King KW, Dybvig K. Transformation of Mycoplasma capricolum and examination of DNA restriction modification in M. capricolum and Mycoplasma mycoides subsp. mycoides. Plasmid 1994;31:308–311 [CrossRef][PubMed]
    [Google Scholar]
  41. Cao J, Kapke PA, Minion FC. Transformation of Mycoplasma gallisepticum with Tn916, Tn4001, and integrative plasmid vectors. J Bacteriol 1994;176:4459–4462 [CrossRef][PubMed]
    [Google Scholar]
  42. Grant SG, Jessee J, Bloom FR, Hanahan D. Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci USA 1990;87:4645–4649 [CrossRef][PubMed]
    [Google Scholar]
  43. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning. A Laboratory Manual Plainview, NY: Cold Spring Harbor Laboratory Press; 1989
    [Google Scholar]
  44. Hames C, Halbedel S, Hoppert M, Frey J, Stülke J. Glycerol metabolism is important for cytotoxicity of Mycoplasma pneumoniae. J Bacteriol 2009;191:747–753 [CrossRef][PubMed]
    [Google Scholar]
  45. Himmelreich R, Hilbert H, Plagens H, Pirkl E, Li BC et al. Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. Nucleic Acids Res 1996;24:4420–4449 [CrossRef][PubMed]
    [Google Scholar]
  46. Gao F, Zhang CT. Ori-Finder: a web-based system for finding oriCs in unannotated bacterial genomes. BMC Bioinformatics 2008;9:79 [CrossRef][PubMed]
    [Google Scholar]
  47. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 2001;25:402–408 [CrossRef][PubMed]
    [Google Scholar]
  48. Hilbert H, Himmelreich R, Plagens H, Herrmann R. Sequence analysis of 56 kb from the genome of the bacterium Mycoplasma pneumoniae comprising the dnaA region, the atp operon and a cluster of ribosomal protein genes. Nucleic Acids Res 1996;24:628–639 [CrossRef][PubMed]
    [Google Scholar]
  49. Briggs GS, Smits WK, Soultanas P. Chromosomal replication initiation machinery of low-G+C-content Firmicutes. J Bacteriol 2012;194:5162–5170 [CrossRef][PubMed]
    [Google Scholar]
  50. Ogasawara N, Yoshikawa H. Genes and their organization in the replication origin region of the bacterial chromosome. Mol Microbiol 1992;6:629–634 [CrossRef][PubMed]
    [Google Scholar]
  51. Himmelreich R, Plagens H, Hilbert H, Reiner B, Herrmann R. Comparative analysis of the genomes of the bacteria Mycoplasma pneumoniae and Mycoplasma genitalium. Nucleic Acids Res 1997;25:701–712 [CrossRef][PubMed]
    [Google Scholar]
  52. Wolański M, Donczew R, Zawilak-Pawlik A, Zakrzewska-Czerwińska J. oriC-encoded instructions for the initiation of bacterial chromosome replication. Front Microbiol 2014;5:735 [CrossRef][PubMed]
    [Google Scholar]
  53. Renaudin J. Extrachromosomal elements and gene transfer. In Razin S, Herrmann R. (editors) Molecular Biology and Pathogenicity of Mycoplasmas New York: Kluwer Academic Publishers/ Plenum Press; 2002; pp.347–370
    [Google Scholar]
  54. Großhennig S, Schmidl SR, Schmeisky G, Busse J, Stülke J. Implication of glycerol and phospholipid transporters in Mycoplasma pneumoniae growth and virulence. Infect Immun 2013;81:896–904 [CrossRef][PubMed]
    [Google Scholar]
  55. Schmidl SR. Pathogenicity of a minimal organism: Role of protein phosphorylation in Mycoplasma pneumoniae. PhD thesis. University of Göttingen, Göttingen, Germany: 2010
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000711
Loading
/content/journal/micro/10.1099/mic.0.000711
Loading

Data & Media loading...

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error