1887

Abstract

Global Salmonella infection, especially in developing countries, is a health and economic burden. The use of antibiotic drugs in treating the infection is proving less effective due to the alarming rise of antibiotic-resistant strains of Salmonella, the effects of antibiotics on normal gut microflora and antibiotic-associated diarrhoea, all of which bring a growing need for alternative treatments, including the use of probiotic micro-organisms. However, there are issues with probiotics, including their potential to be opportunistic pathogens and antibiotic-resistant carriers, and their antibiotic susceptibility if used as complementary therapy. Clinical trials, animal trials and in vitro investigations into the prophylactic and therapeutic efficacies of probiotics have demonstrated antagonistic properties against Salmonella and other enteropathogenic bacteria. Nonetheless, there is a need for further studies into the potential mechanisms, efficacy and mode of delivery of yeast probiotics in Salmonella infections. This review discusses Salmonella infections and treatment using antibiotics and probiotics.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000709
2018-08-23
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/164/11/1327.html?itemId=/content/journal/micro/10.1099/mic.0.000709&mimeType=html&fmt=ahah

References

  1. Kirk MD, Pires SM, Black RE, Caipo M, Crump JA et al. World Health Organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010: a data synthesis. PLoS Med 2015;12:e1001921 [CrossRef][PubMed]
    [Google Scholar]
  2. Petri WA, Miller M, Binder HJ, Levine MM, Dillingham R et al. Enteric infections, diarrhea, and their impact on function and development. J Clin Invest 2008;118:1277–1290 [CrossRef][PubMed]
    [Google Scholar]
  3. Dixon EF, Hall RA. Noisy neighbourhoods: quorum sensing in fungal-polymicrobial infections. Cell Microbiol 2015;17:1431–1441 [CrossRef][PubMed]
    [Google Scholar]
  4. Bula-Rudas FJ, Rathore MH, Maraqa NF. Salmonella infections in childhood. Adv Pediatr 2015;62:29–58 [CrossRef][PubMed]
    [Google Scholar]
  5. Feasey NA, Dougan G, Kingsley RA, Heyderman RS, Gordon MA. Invasive non-typhoidal salmonella disease: an emerging and neglected tropical disease in Africa. Lancet 2012;379:2489–2499 [CrossRef][PubMed]
    [Google Scholar]
  6. Ford L, Glass K, Veitch M, Wardell R, Polkinghorne B et al. Increasing incidence of Salmonella in Australia, 2000–2013. PLoS One 2016;11:e0163989 [CrossRef][PubMed]
    [Google Scholar]
  7. Andino A, Hanning I. Salmonella enterica: survival, colonization, and virulence differences among serovars. ScientificWorldJournal 2015;2015:520179
    [Google Scholar]
  8. Deen J, von Seidlein L, Andersen F, Elle N, White NJ et al. Community-acquired bacterial bloodstream infections in developing countries in south and southeast Asia: a systematic review. Lancet Infect Dis 2012;12:480–487 [CrossRef][PubMed]
    [Google Scholar]
  9. Reddy EA, Shaw AV, Crump JA. Community-acquired bloodstream infections in Africa: a systematic review and meta-analysis. Lancet Infect Dis 2010;10:417–432 [CrossRef][PubMed]
    [Google Scholar]
  10. Nami Y, Haghshenas B, Abdullah N, Barzegari A, Radiah D et al. Probiotics or antibiotics: future challenges in medicine. J Med Microbiol 2015;64:137–146 [CrossRef][PubMed]
    [Google Scholar]
  11. Sanz Y, Nadal I, Sánchez E. Probiotics as drugs against human gastrointestinal infections. Recent Pat Antiinfect Drug Discov 2007;2:148–156 [CrossRef][PubMed]
    [Google Scholar]
  12. FAO/WHO Probiotics in food Health and nutritional properties and guidelines for evaluation:Report of a Joint FAO/WHO Expert Consultation on Evaluation of health and Nutritional Properties of Probiotics in Food including powder Milk with Live lactic Acid bacteria. Cordoba, Argentina 2002; Report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food London, Ontario, Canada 2002 FAO and WHO Report. 2002
  13. Bakken JS. Staggered and tapered antibiotic withdrawal with administration of kefir for recurrent Clostridium difficile infection. Clin Infect Dis 2014;59:858–861 [CrossRef][PubMed]
    [Google Scholar]
  14. Bekar O, Yilmaz Y, Gulten M. Kefir improves the efficacy and tolerability of triple therapy in eradicating Helicobacter pylori. J Med Food 2011;14:344–347 [CrossRef][PubMed]
    [Google Scholar]
  15. Ahmad K, Fatemeh F, Mehri N, Maryam S. Probiotics for the treatment of pediatric helicobacter pylori infection: a randomized double blind clinical trial. Iran J Pediatr 2013;23:79–84[PubMed]
    [Google Scholar]
  16. Kaur IP, Chopra K, Saini A. Probiotics: potential pharmaceutical applications. Eur J Pharm Sci 2002;15:1–9 [CrossRef][PubMed]
    [Google Scholar]
  17. Pérez-Sotelo LS, Talavera-Rojas M, Monroy-Salazar HG, Lagunas-Bernabé S, Cuarón-Ibargüengoytia JA et al. In vitro evaluation of the binding capacity of Saccharomyces cerevisiae Sc47 to adhere to the wall of Salmonella spp. Rev Latinoam Microbiol 2005;47:70–75[PubMed]
    [Google Scholar]
  18. Brenner FW, Villar RG, Angulo FJ, Tauxe R, Swaminathan B et al. Salmonella nomenclature. J Clin Microbiol 2000;38:2465–2467[PubMed]
    [Google Scholar]
  19. Tindall BJ, Grimont PA, Garrity GM, Euzéby JP. Nomenclature and taxonomy of the genus Salmonella. Int J Syst Evol Microbiol 2005;55:521–524 [CrossRef][PubMed]
    [Google Scholar]
  20. Monte AS, De Santos PE. Salmonella. Classification, Genetics, and Disease Outbreaks New York: Nova Biomedical/Nova Science Publishers, Inc; 2012
    [Google Scholar]
  21. Crump JA, Sjölund-Karlsson M, Gordon MA, Parry CM. Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive Salmonella infections. Clin Microbiol Rev 2015;28:901–937 [CrossRef][PubMed]
    [Google Scholar]
  22. WHO Background document: the diagnosis, treatment and prevention of typhoid fever. 2003
  23. Kumar P, Kumar R. Enteric Fever. Indian J Pediatr 2017;84:227–230 [CrossRef][PubMed]
    [Google Scholar]
  24. Lönnermark E, Lappas G, Friman V, Wold AE, Backhaus E et al. Effects of probiotic intake and gender on nontyphoid Salmonella infection. J Clin Gastroenterol 2015;49:116–123 [CrossRef][PubMed]
    [Google Scholar]
  25. Hocking AD. Foodborne microorganisms of public health significance: Australian Institute of Food Science and Technology Incorporated (AIFST Inc). 2012
  26. Xu H, Lee HY, Ahn J. Growth and virulence properties of biofilm-forming Salmonella enterica serovar typhimurium under different acidic conditions. Appl Environ Microbiol 2010;76:7910–7917 [CrossRef][PubMed]
    [Google Scholar]
  27. Wagner C, Hensel M. Adhesive Mechanisms of Salmonella enterica. In Linke D, Goldman A. (editors) Bacterial Adhesion: Chemistry, Biology and Physics Dordrecht: Springer Netherlands; 2011; pp.17–34 p.
    [Google Scholar]
  28. Velge P, Wiedemann A, Rosselin M, Abed N, Boumart Z et al. Multiplicity of Salmonella entry mechanisms, a new paradigm for Salmonella pathogenesis. Microbiologyopen 2012;1:243–258 [CrossRef][PubMed]
    [Google Scholar]
  29. Baron S. Epidemiology-Medical Microbiology Galveston: University of Texas Medical Branch; 1996
    [Google Scholar]
  30. Ashkenazi S, Cleary TG, Murray BE, Wanger A, Pickering LK. Quantitative analysis and partial characterization of cytotoxin production by Salmonella strains. Infect Immun 1988;56:3089–3094[PubMed]
    [Google Scholar]
  31. Rumeu MT, Suárez MA, Morales S, Rotger R. Enterotoxin and cytotoxin production by Salmonella enteritidis strains isolated from gastroenteritis outbreaks. J Appl Microbiol 1997;82:19–31 [CrossRef][PubMed]
    [Google Scholar]
  32. Song J, Gao X, Galán JE. Structure and function of the Salmonella Typhi chimaeric A2B5 typhoid toxin. Nature 2013;499:350354 [CrossRef][PubMed]
    [Google Scholar]
  33. Chopra AK, Huang JH, Xu X, Burden K, Niesel DW et al. Role of Salmonella enterotoxin in overall virulence of the organism. Microb Pathog 1999;27:155–171 [CrossRef][PubMed]
    [Google Scholar]
  34. Chong A, Lee S, Yang YA, Song J. The role of typhoid Toxin in Salmonella Typhi virulence. Yale J Biol Med 2017;90:283–290[PubMed]
    [Google Scholar]
  35. Nakano M, Yamasaki E, Ichinose A, Shimohata T, Takahashi A et al. Salmonella enterotoxin (Stn) regulates membrane composition and integrity. Dis Model Mech 2012;5:515–521 [CrossRef][PubMed]
    [Google Scholar]
  36. Ibarra JA, Steele-Mortimer O. Salmonella virulence factors that modulate intracellular survival. Cellular Microbiology 2009;11:1579–1586
    [Google Scholar]
  37. Siba V, Horwood PF, Vanuga K, Wapling J, Sehuko R et al. Evaluation of serological diagnostic tests for typhoid fever in Papua New Guinea using a composite reference standard. Clin Vaccine Immunol 2012;19:1833–1837 [CrossRef][PubMed]
    [Google Scholar]
  38. Prabagaran SR, Kalaiselvi V, Chandramouleeswaran N, Deepthi KNG, Brahmadathan KN et al. Molecular diagnosis of Salmonella typhi and its virulence in suspected typhoid blood samples through nested multiplex PCR. J Microbiol Methods 2017;139:150–154 [CrossRef][PubMed]
    [Google Scholar]
  39. Medalla F, Gu W, Mahon BE, Judd M, Folster J et al. Estimated incidence of antimicrobial drug-resistant nontyphoidal Salmonella infections, United States, 2004–2012. Emerg Infect Dis 2016;23:29–37 [CrossRef][PubMed]
    [Google Scholar]
  40. Sabtu N, Enoch DA, Brown NM. Antibiotic resistance: what, why, where, when and how?. Br Med Bull 2015;16:105–113 [CrossRef]
    [Google Scholar]
  41. Feasey NA, Gaskell K, Wong V, Msefula C, Selemani G et al. Rapid emergence of multidrug resistant, H58-lineage Salmonella typhi in Blantyre, Malawi. PLoS Negl Trop Dis 2015;9:e0003748 [CrossRef][PubMed]
    [Google Scholar]
  42. Wong VK, Baker S, Pickard DJ, Parkhill J, Page AJ et al. Phylogeographical analysis of the dominant multidrug-resistant H58 clade of Salmonella Typhi identifies inter- and intracontinental transmission events. Nat Genet 2015;47:632–639 [CrossRef][PubMed]
    [Google Scholar]
  43. Oelschlaeger TA. Mechanisms of probiotic actions – A review. Int J Med Microbiol 2010;300:57–62 [CrossRef][PubMed]
    [Google Scholar]
  44. Priyodip P, Prakash PY, Balaji S. Phytases of probiotic bacteria: characteristics and beneficial aspects. Indian J Microbiol 2017;57:148–154 [CrossRef][PubMed]
    [Google Scholar]
  45. Saarela M, Mogensen G, Fondén R, Mättö J, Mattila-Sandholm T et al. Probioticbacteria: safety, functional and technological properties. J Biotechnol 2000;84:197–215
    [Google Scholar]
  46. Prado MR, Blandón LM, Vandenberghe LP, Rodrigues C, Castro GR et al. Milk kefir: composition, microbial cultures, biological activities, and related products. Front Microbiol 2015;6:1177 [CrossRef][PubMed]
    [Google Scholar]
  47. Plessas S, Nouska C, Mantzourani I, Kourkoutas Y, Alexopoulos A et al. Microbiological exploration of different types of kefir grains. Fermentation 2016;3:1 [CrossRef]
    [Google Scholar]
  48. Martins FS, Veloso LC, Arantes RM, Nicoli JR. Effects of yeast probiotic formulation on viability, revival and protection against infection with Salmonella enterica ssp. enterica serovar Typhimurium in mice. Lett Appl Microbiol 2009;49:738–744 [CrossRef][PubMed]
    [Google Scholar]
  49. Walker GM. Yeast Physiology and Biotechnology New York: Chichester; 1998
    [Google Scholar]
  50. Watkinson SC, Boddy L, Money N. The Fungi, 3rd ed. Saint Louis: Elsevier Science; 2015
    [Google Scholar]
  51. Kelesidis T, Pothoulakis C. Efficacy and safety of the probiotic Saccharomyces boulardii for the prevention and therapy of gastrointestinal disorders. Therap Adv Gastroenterol 2012;5:111–125 [CrossRef][PubMed]
    [Google Scholar]
  52. Rajkowska K, Kunicka-Styczyńska A. Probiotic activity of Saccharomyces cerevisiae var. boulardii against human pathogens. Food Technol Biotechnol 2012;50:230–236
    [Google Scholar]
  53. Tomicic Z, Colovic R, Cabarkapa I, Vukmirovic D, Djuragic O et al. Beneficial properties of probiotic yeast Saccharomyces boulardii. Food Feed Res 2016;43:103–110 [CrossRef]
    [Google Scholar]
  54. Palma ML, Zamith-Miranda D, Martins FS, Bozza FA, Nimrichter L et al. Probiotic Saccharomyces cerevisiae strains as biotherapeutic tools: is there room for improvement?. Appl Microbiol Biotechnol 2015;99:6563–6570 [CrossRef][PubMed]
    [Google Scholar]
  55. Guttman JA, Finlay BB. Tight junctions as targets of infectious agents. Biochim Biophys Acta 2009;1788:832–841 [CrossRef][PubMed]
    [Google Scholar]
  56. Rao RK, Samak G. Protection and restitution of gut barrier by probiotics: nutritional and clinical implications. Curr Nutr Food Sci 2013;9:99–107[PubMed]
    [Google Scholar]
  57. Pothoulakis C. Review article: anti-inflammatory mechanisms of action of Saccharomyces boulardii. Aliment Pharmacol Ther 2009;30:826–833 [CrossRef][PubMed]
    [Google Scholar]
  58. Stecher B, Robbiani R, Walker AW, Westendorf AM, Barthel M et al. Salmonella enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota. PLoS Biol 2007;5:e244 [CrossRef][PubMed]
    [Google Scholar]
  59. Hudson LE, McDermott CD, Stewart TP, Hudson WH, Rios D et al. Characterization of the probiotic yeast Saccharomyces boulardii in the Healthy Mucosal Immune System. PLoS One 2016;11:e0153351 [CrossRef][PubMed]
    [Google Scholar]
  60. Stier H, Bischoff S. Saccharomyces boulardii CNCM I-745 on the gut-associated immune system. Clin Exp Gastroenterol 2016;9:269–279
    [Google Scholar]
  61. Ch H, Yun CW, Paik HD, Kim SW, Kang CW et al. Preparation and analysis of yeast cell wall mannoproteins, immune enchancing materials, from cell wall mutant Saccharomyces cerevisiae. J Microbiol Biotechnol 2006;16:247–255
    [Google Scholar]
  62. Means TK, Mylonakis E, Tampakakis E, Colvin RA, Seung E et al. Evolutionarily conserved recognition and innate immunity to fungal pathogens by the scavenger receptors SCARF1 and CD36. J Exp Med 2009;206:637–653 [CrossRef][PubMed]
    [Google Scholar]
  63. Zhou Z, Hartwieg E, Horvitz HR. CED-1 is a transmembrane receptor that mediates cell corpse engulfment in C. elegans. Cell 2001;104:43–56 [CrossRef][PubMed]
    [Google Scholar]
  64. Levitz SM. Innate recognition of fungal cell walls. PLoS Pathog 2010;6:e1000758 [CrossRef][PubMed]
    [Google Scholar]
  65. Pontier-Bres R, Munro P, Boyer L, Anty R, Imbert V et al. Saccharomyces boulardii modifies Salmonella typhimurium traffic and host immune responses along the intestinal tract. PLoS One 2014;9:e103069 [CrossRef][PubMed]
    [Google Scholar]
  66. Romanin D, Serradell M, González Maciel D, Lausada N, Garrote GL et al. Down-regulation of intestinal epithelial innate response by probiotic yeasts isolated from kefir. Int J Food Microbiol 2010;140:102–108 [CrossRef][PubMed]
    [Google Scholar]
  67. Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol 2009;1:a001651 [CrossRef][PubMed]
    [Google Scholar]
  68. Brückner S, Mösch HU. Choosing the right lifestyle: adhesion and development in Saccharomyces cerevisiae. FEMS Microbiol Rev 2012;36:25–58 [CrossRef][PubMed]
    [Google Scholar]
  69. Dranginis AM, Rauceo JM, Coronado JE, Lipke PN. A biochemical guide to yeast adhesins: glycoproteins for social and antisocial occasions. Microbiol Mol Biol Rev 2007;71:282–294 [CrossRef][PubMed]
    [Google Scholar]
  70. Martins FS, Dalmasso G, Arantes RM, Doye A, Lemichez E et al. Interaction of Saccharomyces boulardii with Salmonella enterica serovar Typhimurium protects mice and modifies T84 cell response to the infection. PLoS One 2010;5:e8925 [CrossRef][PubMed]
    [Google Scholar]
  71. Posadas GA, Broadway PR, Thornton JA, Carroll JA, Lawrence A et al. Yeast pro-and paraprobiotics have the capability to bind pathogenic bacteria associated with animal disease. Translational Animal Science 2017;1:60–68
    [Google Scholar]
  72. Tiago FC, Martins FS, Souza EL, Pimenta PF, Araujo HR et al. Adhesion to the yeast cell surface as a mechanism for trapping pathogenic bacteria by Saccharomyces probiotics. J Med Microbiol 2012;61:1194–1207 [CrossRef][PubMed]
    [Google Scholar]
  73. Kisiela DI, Chattopadhyay S, Libby SJ, Karlinsey JE, Fang FC et al. Evolution of Salmonella enterica virulence via point mutations in the fimbrial adhesin. PLoS Pathog 2012;8:e1002733 [CrossRef][PubMed]
    [Google Scholar]
  74. Czerucka D, Piche T, Rampal P. Review article: yeast as probiotics – Saccharomyces boulardii. Aliment Pharmacol Ther 2007;26:767–778 [CrossRef][PubMed]
    [Google Scholar]
  75. Gedek BR. Adherence of Escherichia coli serogroup O 157 and the Salmonella typhimurium mutant DT 104 to the surface of Saccharomyces boulardii. Mycoses 1999;42:261–264[PubMed]
    [Google Scholar]
  76. França RC, Conceição FR, Mendonça M, Haubert L, Sabadin G et al. Pichia pastoris X-33 has probiotic properties with remarkable antibacterial activity against Salmonella Typhimurium. Appl Microbiol Biotechnol 2015;99:7953–7961 [CrossRef][PubMed]
    [Google Scholar]
  77. Muccilli S, Restuccia C. Bioprotective role of yeasts. Microorganisms 2015;3:588–611 [CrossRef]
    [Google Scholar]
  78. Hatoum R, Labrie S, Fliss I. Antimicrobial and probiotic properties of yeasts: from fundamental to novel applications. Front Microbiol 2012;3:421 [CrossRef][PubMed]
    [Google Scholar]
  79. Schaffrath R, Meinhardt F, Klassen R. Yeast Killer Toxins: Fundamentals and Applications 2018; pp.87–118
    [Google Scholar]
  80. Chichester D, Tanner F. Antimicrobial food additives. CRC handbook of food additives 1972;1:115–184
    [Google Scholar]
  81. Erkmen O. Effects of high-pressure carbon dioxide on Escherichia coli in nutrient broth and milk. Int J Food Microbiol 2001;65:131–135 [CrossRef][PubMed]
    [Google Scholar]
  82. White C, Zainasheff J. Yeast: The Practical Guide to Beer Fermentation Brewers Publications; 2010
    [Google Scholar]
  83. McDonnell G, Russell AD. Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 1999;12:147–179[PubMed]
    [Google Scholar]
  84. Lee SY, Park HJ, Best-Popescu C, Jang S, Park YK. The effects of ethanol on the morphological and biochemical properties of individual human red blood cells. PLoS One 2015;10:e0145327 [CrossRef][PubMed]
    [Google Scholar]
  85. Manzo-Avalos S, Saavedra-Molina A. Cellular and mitochondrial effects of alcohol consumption. Int J Environ Res Public Health 2010;7:4281–4304 [CrossRef][PubMed]
    [Google Scholar]
  86. Bajaj BK, Raina S, Singh S. Killer toxin from a novel killer yeast Pichia kudriavzevii RY55 with idiosyncratic antibacterial activity. J Basic Microbiol 2013;53:645–656 [CrossRef][PubMed]
    [Google Scholar]
  87. Waema S, Maneesri J, Masniyom P. Isolation and identification of killer yeast from fermented vegetables. Asian J Food Agro-Industry 2009;2:126–134
    [Google Scholar]
  88. Ochigava I, Collier PJ, Walker GM, Hakenbeck R. Williopsis saturnus yeast killer toxin does not kill Streptococcus pneumoniae. Antonie van Leeuwenhoek 2011;99:559–566 [CrossRef][PubMed]
    [Google Scholar]
  89. Fakruddin M, Hossain MN, Ahmed MM. Antimicrobial and antioxidant activities of Saccharomyces cerevisiae IFST062013, a potential probiotic. BMC Complement Altern Med 2017;17:64 [CrossRef][PubMed]
    [Google Scholar]
  90. Revolledo L, Ferreira CS, Ferreira AJ. Prevention of Salmonella Typhimurium colonization and organ invasion by combination treatment in broiler chicks. Poult Sci 2009;88:734–743 [CrossRef][PubMed]
    [Google Scholar]
  91. Londero A, Iraporda C, Garrote GL, Abraham AG. Cheese whey fermented with kefir micro-organisms: Antagonism against Salmonella and immunomodulatory capacity. Int J Dairy Tech 2015;68:118–126 [CrossRef]
    [Google Scholar]
  92. Sadekuzzaman M, Yang S, Mizan MFR, Ha SD. Current and recent advanced strategies for combating biofilms. Compr Rev Food Sci Food Saf 2015;14:491–509 [CrossRef]
    [Google Scholar]
  93. Gonzalez-Escobedo G, Gunn JS. Gallbladder epithelium as a niche for chronic Salmonella carriage. Infect Immun 2013;81:2920–2930 [CrossRef][PubMed]
    [Google Scholar]
  94. Gunn JS, Marshall JM, Baker S, Dongol S, Charles RC et al. Salmonella chronic carriage: epidemiology, diagnosis, and gallbladder persistence. Trends Microbiol 2014;22:648–655 [CrossRef][PubMed]
    [Google Scholar]
  95. Møller K, Sharif MZ, Olsson L. Production of fungal alpha-amylase by Saccharomyces kluyveri in glucose-limited cultivations. J Biotechnol 2004;111:311–318 [CrossRef][PubMed]
    [Google Scholar]
  96. Lubran MM. Bacterial toxins. Ann Clin Lab Sci 1988;18:58–71
    [Google Scholar]
  97. Czerucka D, Roux I, Rampal P. Saccharomyces boulardii inhibits secretagogue-mediated adenosine 3',5'-cyclic monophosphate induction in intestinal cells. Gastroenterology 1994;106:65–72 [CrossRef][PubMed]
    [Google Scholar]
  98. Buts JP, Dekeyser N, Stilmant C, Delem E, Smets F et al. Saccharomyces boulardii produces in rat small intestine a novel protein phosphatase that inhibits Escherichia coli endotoxin by dephosphorylation. Pediatr Res 2006;60:24–29 [CrossRef][PubMed]
    [Google Scholar]
  99. Hogan DA. Talking to themselves: autoregulation and quorum sensing in fungi. Eukaryot Cell 2006;5:613–619 [CrossRef][PubMed]
    [Google Scholar]
  100. Muramatsu M, Ohto C, Obata S, Sakuradani E, Shimizu S. Alkaline pH enhances farnesol production by Saccharomyces cerevisiae. J Biosci Bioeng 2009;108:52–55 [CrossRef][PubMed]
    [Google Scholar]
  101. Cortés-Sánchez AJ, Hernández-Sánchez H, Jaramillo-Flores ME. Biological activity of glycolipids produced by microorganisms: new trends and possible therapeutic alternatives. Microbiol Res 2013;168:22–32 [CrossRef][PubMed]
    [Google Scholar]
  102. Fariq A, Saeed A. Production and biomedical applications of probiotic biosurfactants. Curr Microbiol 2016;72:489–495 [CrossRef][PubMed]
    [Google Scholar]
  103. Jolly M. Inhibitory effect of biosurfactant purified from probiotic yeast against biofilm producers. J Environ Sci Toxicol Food Technol 2013;6:5155105
    [Google Scholar]
  104. Hwang JB, Kang KJ, Kang YN, Kim AS. Probiotic gastrointestinal allergic reaction caused by Saccharomyces boulardii. Ann Allergy Asthma Immunol 2009;103:87–88 [CrossRef][PubMed]
    [Google Scholar]
  105. Luo G, Samaranayake LP, Yau JY. Candida species exhibit differential in vitro hemolytic activities. J Clin Microbiol 2001;39:2971–2974 [CrossRef][PubMed]
    [Google Scholar]
  106. Yang YL. Virulence factors of Candida species. J Microbiol Immunol Infect 2003;36:223–228
    [Google Scholar]
  107. Ceccato-Antonini SR, Sudbery PE. Filamentous growth in Saccharomyces cerevisiae. Braz J Microbiol 2004;35:173–181 [CrossRef]
    [Google Scholar]
  108. Algburi A, Volski A, Cugini C, Walsh EM, Chistyakov VA et al. Safety Properties and probiotic potential of Bacillus subtilis KATMIRA1933 and Bacillus amyloliquefaciens B-1895. Adv Microbiol 2016;6:432
    [Google Scholar]
  109. Gronbach K, Eberle U, Müller M, Olschläger TA, Dobrindt U et al. Safety of probiotic Escherichia coli strain Nissle 1917 depends on intestinal microbiota and adaptive immunity of the host. Infect Immun 2010;78:3036–3046 [CrossRef][PubMed]
    [Google Scholar]
  110. Alvarez-Olmos MI, Oberhelman RA. Probiotic agents and infectious diseases: a modern perspective on a traditional therapy. Clin Infect Dis 2001;32:1567–1576 [CrossRef][PubMed]
    [Google Scholar]
  111. Higgins JP, Higgins SE, Wolfenden AD, Henderson SN, Torres-Rodriguez A et al. Effect of lactic acid bacteria probiotic culture treatment timing on Salmonella enteritidis in neonatal broilers. Poult Sci 2010;89:243–247 [CrossRef][PubMed]
    [Google Scholar]
  112. Higgins SE, Erf GF, Higgins JP, Henderson SN, Wolfenden AD et al. Effect of probiotic treatment in broiler chicks on intestinal macrophage numbers and phagocytosis of Salmonella enteritidis by abdominal exudate cells. Poult Sci 2007;86:2315–2321 [CrossRef][PubMed]
    [Google Scholar]
  113. Higgins SE, Torres-Rodriguez A, Vicente JL, Sartor CD, Pixley CM et al. Evaluation of intervention strategies for idiopathic diarrhea in commercial turkey brooding houses. J Appl Poult Res 2005;14:345–348 [CrossRef]
    [Google Scholar]
  114. Higgins SE, Higgins JP, Wolfenden AD, Henderson SN, Torres-Rodriguez A et al. Evaluation of a Lactobacillus-based probiotic culture for the reduction of Salmonella enteritidis in neonatal broiler chicks. Poult Sci 2008;87:27–31 [CrossRef][PubMed]
    [Google Scholar]
  115. Higgins JP, Higgins SE, Vicente JL, Wolfenden AD, Tellez G et al. Temporal effects of lactic acid bacteria probiotic culture on Salmonella in neonatal broilers. Poult Sci 2007;86:1662–1666 [CrossRef][PubMed]
    [Google Scholar]
  116. Menconi A, Wolfenden AD, Shivaramaiah S, Terraes JC, Urbano T et al. Effect of lactic acid bacteria probiotic culture for the treatment of Salmonella enterica serovar Heidelberg in neonatal broiler chickens and turkey poults. Poult Sci 2011;90:561–565 [CrossRef][PubMed]
    [Google Scholar]
  117. Heikkilä JE, Nybom SM, Salminen SJ, Meriluoto JA. Removal of cholera toxin from aqueous solution by probiotic bacteria. Pharmaceuticals 2012;5:665–673 [CrossRef][PubMed]
    [Google Scholar]
  118. Yoshimura K, Matsui T, Itoh K. Prevention of Escherichia coli O157:H7 infection in gnotobiotic mice associated with Bifidobacterium strains. Antonie van Leeuwenhoek 2010;97:107–117 [CrossRef][PubMed]
    [Google Scholar]
  119. Huang IF, Lin IC, Liu PF, Cheng MF, Liu YC et al. Lactobacillus acidophilus attenuates Salmonella-induced intestinal inflammation via TGF-β signaling. BMC Microbiol 2015;15:203 [CrossRef][PubMed]
    [Google Scholar]
  120. Kamada N, Maeda K, Inoue N, Hisamatsu T, Okamoto S et al. Nonpathogenic Escherichia coli strain Nissle 1917 inhibits signal transduction in intestinal epithelial cells. Infect Immun 2008;76:214–220 [CrossRef][PubMed]
    [Google Scholar]
  121. Rishi P, Preet S, Kaur P. Effect of L. plantarum cell-free extract and co-trimoxazole against Salmonella Typhimurium: a possible adjunct therapy. Ann Clin Microbiol Antimicrob 2011;10:9 [CrossRef][PubMed]
    [Google Scholar]
  122. Truusalu K, Mikelsaar RH, Naaber P, Karki T, Kullisaar T et al. Eradication of Salmonella Typhimurium infection in a murine model of typhoid fever with the combination of probiotic Lactobacillus fermentum ME-3 and ofloxacin. BMC Microbiol 2008;8:132 [CrossRef][PubMed]
    [Google Scholar]
  123. Jiang Y, Kong Q, Roland KL, Wolf A, Curtiss R. Multiple effects of Escherichia coli Nissle 1917 on growth, biofilm formation, and inflammation cytokines profile of Clostridium perfringens type A strain CP4. Pathog Dis 2014;70:390–400 [CrossRef][PubMed]
    [Google Scholar]
  124. Collado MC, Meriluoto J, Salminen S. Role of commercial probiotic strains against human pathogen adhesion to intestinal mucus. Lett Appl Microbiol 2007;45:454–460 [CrossRef][PubMed]
    [Google Scholar]
  125. Jacobi CA, Grundler S, Hsieh CJ, Frick JS, Adam P et al. Quorum sensing in the probiotic bacterium Escherichia coli Nissle 1917 (Mutaflor) - evidence that furanosyl borate diester (AI-2) is influencing the cytokine expression in the DSS colitis mouse model. Gut Pathog 2012;4:8 [CrossRef][PubMed]
    [Google Scholar]
  126. Altenhoefer A, Oswald S, Sonnenborn U, Enders C, Schulze J et al. The probiotic Escherichia coli strain Nissle 1917 interferes with invasion of human intestinal epithelial cells by different enteroinvasive bacterial pathogens. FEMS Immunol Med Microbiol 2004;40:223–229 [CrossRef][PubMed]
    [Google Scholar]
  127. Vuotto C, Longo F, Donelli G. Probiotics to counteract biofilm-associated infections: promising and conflicting data. Int J Oral Sci 2014;6:189–194 [CrossRef][PubMed]
    [Google Scholar]
  128. Collado MC, Meriluoto J, Salminen S. Role of commercial probiotic strains against human pathogen adhesion to intestinal mucus. Lett Appl Microbiol 2007;45:454–460 [CrossRef][PubMed]
    [Google Scholar]
  129. Chua KJ, Kwok WC, Aggarwal N, Sun T, Chang MW. Designer probiotics for the prevention and treatment of human diseases. Curr Opin Chem Biol 2017;40:8–16 [CrossRef][PubMed]
    [Google Scholar]
  130. Dubourg G, Elsawi Z, Raoult D. Assessment of the in vitro antimicrobial activity of Lactobacillus species for identifying new potential antibiotics. Int J Antimicrob Agents 2015;46:590–593 [CrossRef][PubMed]
    [Google Scholar]
  131. Asahara T, Shimizu K, Nomoto K, Hamabata T, Ozawa A et al. Probiotic bifidobacteria protect mice from lethal infection with Shiga toxin-producing Escherichia coli O157:H7. Infect Immun 2004;72:2240–2247 [CrossRef][PubMed]
    [Google Scholar]
  132. Takahashi M, Taguchi H, Yamaguchi H, Osaki T, Komatsu A et al. The effect of probiotic treatment with Clostridium butyricum on enterohemorrhagic Escherichia coli O157:H7 infection in mice. FEMS Immunol Med Microbiol 2004;41:219–226 [CrossRef][PubMed]
    [Google Scholar]
  133. Carey CM, Kostrzynska M, Ojha S, Thompson S. The effect of probiotics and organic acids on Shiga-toxin 2 gene expression in enterohemorrhagic Escherichia coli O157:H7. J Microbiol Methods 2008;73:125–132 [CrossRef][PubMed]
    [Google Scholar]
  134. Zihler A, Gagnon M, Chassard C, Lacroix C. Protective effect of probiotics on Salmonella infectivity assessed with combined in vitro gut fermentation-cellular models. BMC Microbiol 2011;11:264 [CrossRef][PubMed]
    [Google Scholar]
  135. Tanner SA, Chassard C, Rigozzi E, Lacroix C, Stevens MJ. Bifidobacterium thermophilum RBL67 impacts on growth and virulence gene expression of Salmonella enterica subsp. enterica serovar Typhimurium. BMC Microbiol 2016;16:46 [CrossRef][PubMed]
    [Google Scholar]
  136. Okuneye O, Oloso N, Adekunle O, Ogunfolabo L, Fasanmi O. Protective properties of probiotics on commercial broilers experimentally infected with Salmonella enteritidis. J Vet Sci Anim Husb 2016;4:307
    [Google Scholar]
  137. Rokana N, Singh R, Mallappa RH, Batish VK, Grover S. Modulation of intestinal barrier function to ameliorate Salmonella infection in mice by oral administration of fermented milks produced with Lactobacillus plantarum MTCC 5690 – a probiotic strain of Indian gut origin. J Med Microbiol 2016;65:1482–1493 [CrossRef][PubMed]
    [Google Scholar]
  138. Carter A, Adams M, La Ragione RM, Woodward MJ. Colonisation of poultry by Salmonella Enteritidis S1400 is reduced by combined administration of Lactobacillus salivarius 59 and Enterococcus faecium PXN-33. Vet Microbiol 2017;199:100–107 [CrossRef][PubMed]
    [Google Scholar]
  139. McFarland LV. Meta-analysis of probiotics for the prevention of traveler's diarrhea. Travel Med Infect Dis 2007;5:97–105 [CrossRef][PubMed]
    [Google Scholar]
  140. Forkus B, Ritter S, Vlysidis M, Geldart K, Kaznessis YN. Antimicrobial probiotics reduce Salmonella enterica in Turkey Gastrointestinal Tracts. Sci Rep 2017;7:40695 [CrossRef][PubMed]
    [Google Scholar]
  141. Sabag-Daigle A, Blunk HM, Gonzalez JF, Steidley BL, Boyaka PN et al. Use of attenuated but metabolically competent Salmonella as a probiotic to prevent or treat Salmonella infection. Infect Immun 2016;84:2131–2140 [CrossRef][PubMed]
    [Google Scholar]
  142. Finogenova TV, Morgunov IG, Kamzolova SV, Chernyavskaya OG. Organic acid production by the yeast Yarrowia lipolytica: a review of prospects. Appl Biochem Microbiol 2005;41:418–425 [CrossRef]
    [Google Scholar]
  143. Viljoen BC. Yeast ecological interactions. Yeast'Yeast, Yeast'Bacteria, Yeast'Fungi interactions and yeasts as biocontrol agents. In Querol A, Fleet G. (editors) Yeasts in Food and Beverages Berlin, Heidelberg: Springer Berlin Heidelberg; 2006; pp.83–110
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000709
Loading
/content/journal/micro/10.1099/mic.0.000709
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error