1887

Abstract

Tolyporphins are structurally diverse tetrapyrrole macrocycles produced by the cyanobacterial culture HT-58-2. Although tolyporphins were discovered over 25 years ago, little was known about the microbiology of the culture. The studies reported herein expand the description of the community of predominantly alphaproteobacteria associated with the filamentous HT-58-2 cyanobacterium and isolate a dominant bacterium, Porphyrobacter sp. HT-58-2, for which the complete genome is established and growth properties are examined. Fluorescence in situ hybridization (FISH) analysis of the cyanobacterium–microbial community with a probe targeting the 16S rRNA of Porphyrobacter sp. HT-58-2 showed fluorescence emanating from the cyanobacterial sheath. Although genes for the biosynthesis of bacteriochlorophyll a (BChl a) are present in the Porphyrobacter sp. HT-58-2 genome, the pigment was not detected under the conditions examined, implying the absence of phototrophic growth. Comparative analysis of four Porphyrobacter spp. genomes from worldwide collection sites showed significant collinear gene blocks, with two inversions and three deletion regions. Taken together, the results enrich our understanding of the HT-58-2 cyanobacterium–microbial culture.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000706
2018-08-17
2021-07-31
Loading full text...

Full text loading...

/deliver/fulltext/micro/164/10/1229.html?itemId=/content/journal/micro/10.1099/mic.0.000706&mimeType=html&fmt=ahah

References

  1. Patterson GML, Baldwin CL, Bolis CM, Caplan FR, Karuso H et al. Antineoplastic activity of cultured blue-green algae (Cyanophyta). J Phycol 1991; 27:530–536 [View Article]
    [Google Scholar]
  2. Battersby AR. Tetrapyrroles: the pigments of life. Nat Prod Rep 2000; 17:507–526 [View Article][PubMed]
    [Google Scholar]
  3. Brzezowski P, Richter AS, Grimm B. Regulation and function of tetrapyrrole biosynthesis in plants and algae. Biochim Biophys Acta 2015; 1847:968–985 [View Article][PubMed]
    [Google Scholar]
  4. Prinsep MR, Caplan FR, Moore RE, Patterson GML, Smith CD. Tolyporphin, a novel multidrug resistance reversing agent from the blue-green alga Tolypothrix nodosa. J Am Chem Soc 1992; 114:385–387 [View Article]
    [Google Scholar]
  5. Smith CD, Prinsep MR, Caplan FR, Moore RE, Patterson GM. Reversal of multiple drug resistance by tolyporphin, a novel cyanobacterial natural product. Oncol Res 1994; 6:211–218[PubMed]
    [Google Scholar]
  6. Prinsep MR, Patterson GML, Larsen LK, Smith CD. Further tolyporphins from the blue-green alga Tolypothrix nodosa. Tetrahedron 1995; 51:10523–10530 [View Article]
    [Google Scholar]
  7. Morlière P, Mazière JC, Santus R, Smith CD, Prinsep MR et al. Tolyporphin: a natural product from cyanobacteria with potent photosensitizing activity against tumor cells in vitro and in vivo. Cancer Res 1998; 58:3571–3578[PubMed]
    [Google Scholar]
  8. Prinsep MR, Patterson GM, Larsen LK, Smith CD. Tolyporphins J and K, two further porphinoid metabolites from the cyanobacterium Tolypothrix nodosa. J Nat Prod 1998; 61:1133–1136 [View Article][PubMed]
    [Google Scholar]
  9. Minehan TG, Cook-Blumberg L, Kishi Y, Prinsep MR, Moore RE. Revised structure of tolyporphin A. Angew Chem Int Ed Engl 1999; 38:926–928 [View Article][PubMed]
    [Google Scholar]
  10. Wang W, Kishi Y. Synthesis and structure of tolyporphin A O,O-diacetate. Org Lett 1999; 1:1129–1132 [View Article][PubMed]
    [Google Scholar]
  11. Prinsep MR, Puddick J. Laser desorption ionisation-time of flight mass spectrometry of the tolyporphins, bioactive metabolites from the cyanobacterium Tolypothrix nodosa. Phytochem Anal 2011; 22:285–290 [View Article][PubMed]
    [Google Scholar]
  12. Prinsep MR, Appleton TG, Hanson GR, Lane I, Smith CD et al. Tolyporphin macrocycles from the cyanobacterium Tolypothrix nodosa selectively bind copper and silver and reverse multidrug resistance. Inorg Chem 2017; 56:5577–5585 [View Article][PubMed]
    [Google Scholar]
  13. Brückner C. Tolyporphin-an unusual green chlorin-like dioxobacteriochlorin. Photochem Photobiol 2017; 93:1320–1325 [View Article][PubMed]
    [Google Scholar]
  14. Hood D, Niedzwiedzki DM, Zhang R, Zhang Y, Dai J et al. Photophysical characterization of the naturally occurring dioxobacteriochlorin tolyporphin A and synthetic oxobacteriochlorin analogues. Photochem Photobiol 2017; 93:1204–1215 [View Article][PubMed]
    [Google Scholar]
  15. Zhang Y, Zhang R, Hughes RA, Dai J, Gurr JR et al. Quantitation of tolyporphins, diverse tetrapyrrole secondary metabolites with chlorophyll-like absorption, from a filamentous cyanobacterium-microbial community. Phytochem Anal 2018; 29:205–216 [View Article][PubMed]
    [Google Scholar]
  16. Gunsalus RP, Wolfe RS. Chromophoric factors F342 and F430 of Methanobacterium thermoautotrophicum. FEMS Microbiol Lett 1978; 3:191–193
    [Google Scholar]
  17. Diekert G, Klee B, Thauer RK. Nickel, a component of factor F430 from Methanobacterium thermoautotrophicum. Arch Microbiol 1980; 124:103–106 [View Article][PubMed]
    [Google Scholar]
  18. Hughes RA, Zhang Y, Zhang R, Williams PG, Lindsey JS et al. Genome Sequence and composition of a tolyporphin-producing cyanobacterium-microbial community. Appl Environ Microbiol 2017; 83:e01068-17 [View Article][PubMed]
    [Google Scholar]
  19. Engene N, Choi H, Esquenazi E, Rottacker EC, Ellisman MH et al. Underestimated biodiversity as a major explanation for the perceived rich secondary metabolite capacity of the cyanobacterial genus Lyngbya. Environ Microbiol 2011; 13:1601–1610 [View Article][PubMed]
    [Google Scholar]
  20. Briand E, Humbert JF, Tambosco K, Bormans M, Gerwick WH. Role of bacteria in the production and degradation of Microcystis cyanopeptides. Microbiologyopen 2016; 5:469–478 [View Article][PubMed]
    [Google Scholar]
  21. Cummings SL, Barbé D, Leao TF, Korobeynikov A, Engene N et al. A novel uncultured heterotrophic bacterial associate of the cyanobacterium Moorea producens JHB. BMC Microbiol 2016; 16:198–212 [View Article][PubMed]
    [Google Scholar]
  22. Rouco M, Haley ST, Dyhrman ST. Microbial diversity within the Trichodesmium holobiont. Environ Microbiol 2016; 18:5151–5160 [View Article][PubMed]
    [Google Scholar]
  23. Frischkorn KR, Rouco M, van Mooy BAS, Dyhrman ST. Epibionts dominate metabolic functional potential of Trichodesmium colonies from the oligotrophic ocean. ISME J 2017; 11:2090–2101 [View Article][PubMed]
    [Google Scholar]
  24. Romine MF, Rodionov DA, Maezato Y, Osterman AL, Nelson WC. Underlying mechanisms for syntrophic metabolism of essential enzyme cofactors in microbial communities. ISME J 2017; 11:1434–1446 [View Article][PubMed]
    [Google Scholar]
  25. Hanada S, Kawase Y, Hiraishi A, Takaichi S, Matsuura K et al. Porphyrobacter tepidarius sp. nov., a moderately thermophilic aerobic photosynthetic bacterium isolated from a hot spring. Int J Syst Bacteriol 1997; 47:408–413 [View Article][PubMed]
    [Google Scholar]
  26. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: a Laboratory Manual, 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1989
    [Google Scholar]
  27. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012; 28:1647–1649 [View Article][PubMed]
    [Google Scholar]
  28. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 2014; 42:D206–D214 [View Article][PubMed]
    [Google Scholar]
  29. Weber T, Blin K, Duddela S, Krug D, Kim HU et al. antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res 2015; 43:W237–W243 [View Article][PubMed]
    [Google Scholar]
  30. Darling AE, Mau B, Perna NT. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 2010; 5:e11147 [View Article][PubMed]
    [Google Scholar]
  31. Arndt D, Grant JR, Marcu A, Sajed T, Pon A et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 2016; 44:W16–W21 [View Article][PubMed]
    [Google Scholar]
  32. Ouverney CC, Fuhrman JA. Increase in fluorescence intensity of 16S rRNA in situ hybridization in natural samples treated with chloramphenicol. Appl Environ Microbiol 1997; 63:2735–2740[PubMed]
    [Google Scholar]
  33. Parsley LC, Newman MM, Liles MR. Fluorescence in situ hybridization of bacterial cell suspensions. Cold Spring Harb Protoc 2010pdb.prot5493 [View Article][PubMed]
    [Google Scholar]
  34. Manz W, Amann R, Ludwig W, Wagner M, Schleifer K-H. Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: problems and solutions. Syst Appl Microbiol 1992; 15:593–600 [View Article]
    [Google Scholar]
  35. Hugenholtz P, Tyson GW, Blackall LL. Design and evaluation of 16S rRNA-targeted oligonucleotide probes for fluorescence in situ hybridization. Methods Mol Biol 2002; 179:29–42
    [Google Scholar]
  36. Castro WO, Lima ARJ, Moraes PHG, Siqueira AS, Aguiar DCF et al. Complete genome sequence of Porphyrobacter sp. strain CACIAM 03H1, a proteobacterium obtained from a nonaxenic culture of Microcystis aeruginosa. Genome Announc 2017; 5:e01069-17 [View Article][PubMed]
    [Google Scholar]
  37. Fuerst JA, Hawkins JA, Holmes A, Sly LI, Moore CJ et al. Porphyrobacter neustonensis gen. nov., sp. nov., an aerobic bacteriochlorophyll-synthesizing budding bacterium from fresh water. Int J Syst Bacteriol 1993; 43:125–134 [View Article][PubMed]
    [Google Scholar]
  38. Hiraishi A, Yonemitsu Y, Matsushita M, Shin YK, Kuraishi H et al. Characterization of Porphyrobacter sanguineus sp. nov., an aerobic bacteriochlorophyll-containing bacterium capable of degrading biphenyl and dibenzofuran. Arch Microbiol 2002; 178:45–52 [View Article][PubMed]
    [Google Scholar]
  39. Rainey FA, Silva J, Nobre MF, Silva MT, da Costa MS et al. Porphyrobacter cryptus sp. nov., a novel slightly thermophilic, aerobic, bacteriochlorophyll a-containing species. Int J Syst Evol Microbiol 2003; 53:35–41 [View Article][PubMed]
    [Google Scholar]
  40. Nuyanzina-Boldareva EN, Akimova VN, Takaiche S, Gorlenko VM. New strains of an aerobic anoxygenic phototrophic bacterium Porphyrobacter donghaensis isolated from a siberian thermal spring and a low-mineralization lake. Mikrobiologiia 2016; 85:56–65[PubMed]
    [Google Scholar]
  41. Zhang Y, Zhang R, Nazari M, Bagley MC, Miller ES et al. Mass spectrometric detection of chlorophyll a and the tetrapyrrole secondary metabolite tolyporphin A in the filamentous cyanobacterium HT-58-2. Approaches to high-throughput screening of intact cyanobacteria. J Porphyr Phthalocyanines 2017; 21:759–768 [View Article]
    [Google Scholar]
  42. Layer G, Kervio E, Morlock G, Heinz DW, Jahn D et al. Structural and functional comparison of HemN to other radical SAM enzymes. Biol Chem 2005; 386:971–980 [View Article][PubMed]
    [Google Scholar]
  43. Liu Q, Wu YH, Cheng H, Xu L, Wang CS et al. Complete genome sequence of bacteriochlorophyll-synthesizing bacterium Porphyrobacter neustonensis DSM 9434. Stand Genomic Sci 2017; 12:32–39 [View Article][PubMed]
    [Google Scholar]
  44. Krumsiek J, Arnold R, Rattei T. Gepard: a rapid and sensitive tool for creating dotplots on genome scale. Bioinformatics 2007; 23:1026–1028 [View Article][PubMed]
    [Google Scholar]
  45. Hmelo LR, van Mooy BAS, Mincer TJ. Characterization of bacterial epibionts on the cyanobacterium Trichodesmium. Aquatic Microbial Ecology 2012; 67:1–14 [View Article]
    [Google Scholar]
  46. Cole JK, Hutchison JR, Renslow RS, Kim YM, Chrisler WB et al. Phototrophic biofilm assembly in microbial-mat-derived unicyanobacterial consortia: model systems for the study of autotroph-heterotroph interactions. Front Microbiol 2014; 5:109 [View Article][PubMed]
    [Google Scholar]
  47. Yurkov VV, Beatty JT. Aerobic anoxygenic phototrophic bacteria. Microbiol Mol Biol Rev 1988; 62:695–724
    [Google Scholar]
  48. Lee KB, Liu CT, Anzai Y, Kim H, Aono T et al. The hierarchical system of the 'Alphaproteobacteria': description of Hyphomonadaceae fam. nov., Xanthobacteraceae fam. nov. and Erythrobacteraceae fam. nov. Int J Syst Evol Microbiol 2005; 55:1907–1919 [View Article][PubMed]
    [Google Scholar]
  49. Denner EB, Vybiral D, Koblízek M, Kämpfer P, Busse HJ et al. Erythrobacter citreus sp. nov., a yellow-pigmented bacterium that lacks bacteriochlorophyll a, isolated from the western Mediterranean Sea. Int J Syst Evol Microbiol 2002; 52:1655–1661 [View Article][PubMed]
    [Google Scholar]
  50. Sieber JR, McInerney MJ, Gunsalus RP. Genomic insights into syntrophy: the paradigm for anaerobic metabolic cooperation. Annu Rev Microbiol 2012; 66:429–452 [View Article][PubMed]
    [Google Scholar]
  51. Kouzuma A, Kato S, Watanabe K. Microbial interspecies interactions: recent findings in syntrophic consortia. Front Microbiol 2015; 6:477 [View Article][PubMed]
    [Google Scholar]
  52. Konopka A, Lindemann S, Fredrickson J. Dynamics in microbial communities: unraveling mechanisms to identify principles. ISME J 2015; 9:1488–1495 [View Article][PubMed]
    [Google Scholar]
  53. Scherlach K, Hertweck C. Mediators of mutualistic microbe-microbe interactions. Nat Prod Rep 2018; 35:303–308 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000706
Loading
/content/journal/micro/10.1099/mic.0.000706
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error