1887

Abstract

Salmonella enterica serovar Typhimurium (S. typhimurium) can cause food- and water-borne illness with diverse clinical manifestations. One key factor for S. typhimurium pathogenesis is the alternative sigma factor σ, which is encoded by the rpoE gene and controls the transcription of genes required for outer-membrane integrity in response to alterations in the bacterial envelope. The canonical pathway for σ activation involves proteolysis of the antisigma factor RseA, which is triggered by unfolded outer-membrane porins (OMPs) and lipopolysaccharides (LPS) that have accumulated in the periplasm. This study reports new stress factors that are able to activate σ expression. We demonstrate that UVA radiation induces σ activity in a pathway that is dependent on the stringent response regulator ppGpp. Survival assays revealed that rpoE has a role in the defence against lethal UVA doses that is mediated by functions that are dependent on and independent of the alternative sigma factor RpoS. We also report that the envelope stress generated by phage infection requires a functional rpoE gene for optimal bacterial tolerance and that it is able to induce σ activity in an RseA-dependent fashion. σ activity is also induced by hypo-osmotic shock in the absence of osmoregulated periplasmic glucans (OPGs). It is known that the rpoE gene is not essential in S. typhimurium. However, we report here two cases of the conditional lethality of rpoE mutations in this micro-organism. We demonstrate that rpoE mutations are not tolerated in the absence of OPGs (at low to moderate osmolarity) or LPS O-antigen. The latter case resembles that of the prototypic Escherichia coli strain K12, which neither synthesizes a complete LPS nor tolerates null rpoE mutations.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000701
2018-08-06
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/164/10/1293.html?itemId=/content/journal/micro/10.1099/mic.0.000701&mimeType=html&fmt=ahah

References

  1. Raivio TL, Silhavy TJ. Periplasmic stress and ECF sigma factors. Annu Rev Microbiol 2001;55:591–624 [CrossRef][PubMed]
    [Google Scholar]
  2. Dartigalongue C, Missiakas D, Raina S. Characterization of the Escherichia coli σE regulon. J Biol Chem 2001;276:20866–20875 [CrossRef][PubMed]
    [Google Scholar]
  3. Rhodius VA, Suh WC, Nonaka G, West J, Gross CA. Conserved and variable functions of the σE stress response in related genomes. PLoS Biol 2005;4:e2 [CrossRef]
    [Google Scholar]
  4. Skovierova H, Rowley G, Rezuchova B, Homerova D, Lewis C et al. Identification of the σE regulon of Salmonella enterica serovar Typhimurium. Microbiology 2006;152:1347–1359 [CrossRef][PubMed]
    [Google Scholar]
  5. Rowley G, Spector M, Kormanec J, Roberts M. Pushing the envelope: extracytoplasmic stress responses in bacterial pathogens. Nat Rev Microbiol 2006;4:383–394 [CrossRef][PubMed]
    [Google Scholar]
  6. De Las Peñas A, Connolly L, Gross CA. σE is an essential sigma factor in Escherichia coli. J Bacteriol 1997;179:6862–6864 [CrossRef][PubMed]
    [Google Scholar]
  7. Button JE, Silhavy TJ, Ruiz N. A suppressor of cell death caused by the loss of σE downregulates extracytoplasmic stress responses and outer membrane vesicle production in Escherichia coli. J Bacteriol 2007;189:1523–1530 [CrossRef][PubMed]
    [Google Scholar]
  8. Ades SE, Connolly LE, Alba BM, Gross CA. The Escherichia coli σE-dependent extracytoplasmic stress response is controlled by the regulated proteolysis of an anti-sigma factor. Genes Dev 1999;13:2449–2461 [CrossRef][PubMed]
    [Google Scholar]
  9. Alba BM, Leeds JA, Onufryk C, Lu CZ, Gross CA. DegS and YaeL participate sequentially in the cleavage of RseA to activate the σE-dependent extracytoplasmic stress response. Genes Dev 2002;16:2156–2168 [CrossRef][PubMed]
    [Google Scholar]
  10. Walsh NP, Alba BM, Bose B, Gross CA, Sauer RT. OMP peptide signals initiate the envelope-stress response by activating DegS protease via relief of inhibition mediated by its PDZ domain. Cell 2003;113:61–71 [CrossRef][PubMed]
    [Google Scholar]
  11. Wilken C, Kitzing K, Kurzbauer R, Ehrmann M, Clausen T. Crystal structure of the DegS stress sensor: How a PDZ domain recognizes misfolded protein and activates a protease. Cell 2004;117:483–494[PubMed]
    [Google Scholar]
  12. Lima S, Guo MS, Chaba R, Gross CA, Sauer RT. Dual molecular signals mediate the bacterial response to outer-membrane stress. Science 2013;340:837–841 [CrossRef][PubMed]
    [Google Scholar]
  13. Kim DY. Two stress sensor proteins for the expression of σE regulon: DegS and RseB. J Microbiol 2015;53:306–310 [CrossRef][PubMed]
    [Google Scholar]
  14. Costanzo A, Ades SE. Growth phase-dependent regulation of the extracytoplasmic stress factor, σE, by guanosine 3',5'-bispyrophosphate (ppGpp). J Bacteriol 2006;188:4627–4634 [CrossRef][PubMed]
    [Google Scholar]
  15. Costanzo A, Nicoloff H, Barchinger SE, Banta AB, Gourse RL et al. ppGpp and DksA likely regulate the activity of the extracytoplasmic stress factor σE in Escherichia coli by both direct and indirect mechanisms. Mol Microbiol 2008;67:619–632 [CrossRef][PubMed]
    [Google Scholar]
  16. Muller C, Bang IS, Velayudhan J, Karlinsey J, Papenfort K et al. Acid stress activation of the σE stress response in Salmonella enterica serovar Typhimurium. Mol Microbiol 2009;71:1228–1238 [CrossRef][PubMed]
    [Google Scholar]
  17. Costa CS, Antón DN. Role of the ftsA1p promoter in the resistance of mucoid mutants of Salmonella enterica to mecillinam: characterization of a new type of mucoid mutant. FEMS Microbiol Lett 2001;200:201–205 [CrossRef][PubMed]
    [Google Scholar]
  18. Antón DN. Resistance to mecillinam produced by the co-operative action of mutations affecting lipopolysaccharide, spoT, and cya or crp genes of Salmonella typhimurium. Mol Microbiol 1995;16:587–595 [CrossRef][PubMed]
    [Google Scholar]
  19. Shikuma NJ, Yildiz FH. Identification and characterization of OscR, a transcriptional regulator involved in osmolarity adaptation in Vibrio cholerae. J Bacteriol 2009;191:4082–4096 [CrossRef][PubMed]
    [Google Scholar]
  20. Costa CS, Pizarro RA, Antón DN. Influence of RpoS, cAMP-receptor protein, and ppGpp on expression of the opgGH operon and osmoregulated periplasmic glucan content of Salmonella enterica serovar Typhimurium. Can J Microbiol 2009;55:1284–1293 [CrossRef][PubMed]
    [Google Scholar]
  21. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1989
    [Google Scholar]
  22. Skovierova H, Rezuchova B, Homerova D, Roberts M, Kormanec J. Characterization of the σE-dependent rpoEp3 promoter of Salmonella enterica serovar Typhimurium. FEMS Microbiol Lett 2006;261:53–59 [CrossRef][PubMed]
    [Google Scholar]
  23. Simons RW, Houman F, Kleckner N. Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene 1987;53:85–96 [CrossRef][PubMed]
    [Google Scholar]
  24. Miller JH. A Short Course in Bacterial Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1992
    [Google Scholar]
  25. Song M, Kim HJ, Kim EY, Shin M, Lee HC et al. ppGpp-dependent stationary phase induction of genes on Salmonella pathogenicity island 1. J Biol Chem 2004;279:34183–34190 [CrossRef][PubMed]
    [Google Scholar]
  26. Leive L, Morrison DC. Isolation of lipopolysaccharides from bacteria. Methods Enzymol 1972;28:254–262
    [Google Scholar]
  27. Komuro T, Galanos C. Analysis of Salmonella lipopolysaccharides by sodium deoxycholate-polyacrylamide gel electrophoresis. J Chromatogr 1988;450:381–387 [CrossRef][PubMed]
    [Google Scholar]
  28. Dröge W, Lehmann V, Lüderitz O, Westphal O. Structural investigations on the 2-keto-3-deoxyoctonate region of lipopolysaccharides. Eur J Biochem 1970;14:175–184 [CrossRef][PubMed]
    [Google Scholar]
  29. Tsai CM, Frasch CE. A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem 1982;119:115–119 [CrossRef][PubMed]
    [Google Scholar]
  30. Cadenas E, Sies H. Low-level chemiluminescence as an indicador of singlet molecular oxygen in biological systems. Method Enzymol 1984;105:221–231
    [Google Scholar]
  31. Chamberlain J, Moss SH. Lipid peroxidation and other membrane damage produced in Escherichia coli K1060. Photochem Photobiol 1987;45:625–630
    [Google Scholar]
  32. Hu ML, Tappel AL. Potentiation of oxidative damage to proteins by ultraviolet-A and protection by antioxidants. Photochem Photobiol 1992;56:357–363[PubMed]
    [Google Scholar]
  33. Bosshard F, Bucheli M, Meur Y, Egli T. The respiratory chain is the cell's Achilles' heel during UVA inactivation in Escherichia coli. Microbiology 2010;156:2006–2015 [CrossRef][PubMed]
    [Google Scholar]
  34. Pizarro RA. UV-A oxidative damage modified by environmental conditions in Escherichia coli. Int J Radiat Biol 1995;68:293–299 [CrossRef][PubMed]
    [Google Scholar]
  35. Berney M, Weilenmann HU, Egli T. Gene expression of Escherichia coli in continuous culture during adaptation to artificial sunlight. Environ Microbiol 2006;8:1635–1647 [CrossRef][PubMed]
    [Google Scholar]
  36. Pezzoni M, Pizarro RA, Costa CS. Protective effect of low UVA irradiation against the action of lethal UVA on Pseudomonas aeruginosa: role of the relA gene. J Photochem Photobiol B 2012;116:95–104 [CrossRef][PubMed]
    [Google Scholar]
  37. Pezzoni M, Tribelli PM, Pizarro RA, López NI, Costa CS. Exposure to low UVA doses increases KatA and KatB catalase activities, and confers cross-protection against subsequent oxidative injuries in Pseudomonas aeruginosa. Microbiology 2016;162:855–864 [CrossRef][PubMed]
    [Google Scholar]
  38. Testerman TL, Vazquez-Torres A, Xu Y, Jones-Carson J, Libby SJ et al. The alternative sigma factor sigmaE controls antioxidant defences required for Salmonella virulence and stationary-phase survival. Mol Microbiol 2002;43:771–782 [CrossRef][PubMed]
    [Google Scholar]
  39. Cashel M, Gentry DR, Hernandez VJ, Vinella D. The stringent response. In Neidhardt FC, Curtis III R, Ingraham JL, ECC Lin, Low KB et al. (editors) Escherichia coli and Salmonella Cellular and Molecular Biologyvol. 1 Washington, DC: ASM Press; 1996; pp.1458–1496
    [Google Scholar]
  40. Dalebroux ZD, Svensson SL, Gaynor EC, Swanson MS. ppGpp conjures bacterial virulence. Microbiol Mol Biol Rev 2010;74:171–199 [CrossRef][PubMed]
    [Google Scholar]
  41. Blondel MO, Favre A. tRNAPhe and tRNAPro are the near-ultraviolet molecular targets triggering the growth delay effect. Biochem Biophys Res Commun 1988;150:979–986 [CrossRef][PubMed]
    [Google Scholar]
  42. Favre A, Hajnsdorf E, Thiam K, Caldeira de Araujo A. Mutagenesis and growth delay induced in Escherichia coli by near-ultraviolet radiations. Biochimie 1985;67:335–342 [CrossRef][PubMed]
    [Google Scholar]
  43. Ramabhadran TV, Jagger J. Mechanism of growth delay induced in Escherichia coli by near ultraviolet radiation. Proc Natl Acad Sci USA 1976;73:59–63 [CrossRef][PubMed]
    [Google Scholar]
  44. Hoerter JD, Arnold AA, Kuczynska DA, Shibuya A, Ward CS et al. Effects of sublethal UVA irradiation on activity levels of oxidative defense enzymes and protein oxidation in Escherichia coli. J Photochem Photobiol B 2005;81:171–180 [CrossRef][PubMed]
    [Google Scholar]
  45. Berney M, Weilenmann HU, Simonetti A, Egli T. Efficacy of solar disinfection of Escherichia coli, Shigella flexneri, Salmonella Typhimurium and Vibrio cholerae. J Appl Microbiol 2006;101:828–836 [CrossRef][PubMed]
    [Google Scholar]
  46. Bosshard F, Berney M, Scheifele M, Weilenmann HU, Egli T. Solar disinfection (SODIS) and subsequent dark storage of Salmonella typhimurium and Shigella flexneri monitored by flow cytometry. Microbiology 2009;155:1310–1317 [CrossRef][PubMed]
    [Google Scholar]
  47. Zaafrane S, Maatouk K, Gauthier JM, Bakhrouf A. Effect of previous culture conditions and the presence of the rpoS gene on the survival of Salmonella typhimurium in sea water exposed to sunlight. Can J Microbiol 2004;50:341–350 [CrossRef][PubMed]
    [Google Scholar]
  48. Berney M, Weilenmann HU, Ihssen J, Bassin C, Egli T. Specific growth rate determines the sensitivity of Escherichia coli to thermal, UVA, and solar disinfection. Appl Environ Microbiol 2006;72:2586–2593 [CrossRef][PubMed]
    [Google Scholar]
  49. Weber H, Polen T, Heuveling J, Wendisch VF, Hengge R. Genome-wide analysis of the general stress response network in Escherichia coli: σS-dependent genes, promoters, and sigma factor selectivity. J Bacteriol 2005;187:1591–1603 [CrossRef][PubMed]
    [Google Scholar]
  50. Bang IS, Frye JG, McClelland M, Velayudhan J, Fang FC. Alternative sigma factor interactions in Salmonella: σE and σH promote antioxidant defences by enhancing σS levels. Mol Microbiol 2005;56:811–823 [CrossRef][PubMed]
    [Google Scholar]
  51. Bohin JP. Osmoregulated periplasmic glucans in Proteobacteria. FEMS Microbiol Lett 2000;186:11–19 [CrossRef][PubMed]
    [Google Scholar]
  52. Geiger O, Russo FD, Silhavy TJ, Kennedy EP. Membrane-derived oligosaccharides affect porin osmoregulation only in media of low ionic strength. J Bacteriol 1992;174:1410–1413 [CrossRef][PubMed]
    [Google Scholar]
  53. Fiedler W, Rotering H. Properties of Escherichia coli mutants lacking membrane-derived oligosaccharides. J Biol Chem 1988;263:14684–14689[PubMed]
    [Google Scholar]
  54. Mecsas J, Rouviere PE, Erickson JW, Donohue TJ, Gross CA. The activity of σE, an Escherichia coli heat-inducible sigma-factor, is modulated by expression of outer membrane proteins. Genes Dev 1993;7:2618–2628 [CrossRef][PubMed]
    [Google Scholar]
  55. Bianchi AA, Baneyx F. Hyperosmotic shock induces the σ32 and σE stress regulons of Escherichia coli. Mol Microbiol 1999;34:1029–1038 [CrossRef][PubMed]
    [Google Scholar]
  56. McMeechan A, Roberts M, Cogan TA, Jørgensen F, Stevenson A et al. Role of the alternative sigma factors σE and σS in survival of Salmonella enterica serovar Typhimurium during starvation, refrigeration and osmotic shock. Microbiology 2007;153:263–269 [CrossRef][PubMed]
    [Google Scholar]
  57. Tam C, Missiakas D. Changes in lipopolysaccharide structure induce the σE-dependent response of Escherichia coli. Mol Microbiol 2005;55:1403–1412 [CrossRef][PubMed]
    [Google Scholar]
  58. Klein G, Lindner B, Brabetz W, Brade H, Raina S. Escherichia coli K-12 suppressor-free mutants lacking early glycosyltransferases and late acyltransferases: minimal lipopolysaccharide structure and induction of envelope stress response. J Biol Chem 2009;284:15369–15389 [CrossRef][PubMed]
    [Google Scholar]
  59. Gamage J, Zhang Z. Applications of photocatalytic disinfection. Int J Photoenergy 2010;2010:1–11 [CrossRef]
    [Google Scholar]
  60. McGuigan KG, Conroy RM, Mosler HJ, du Preez M, Ubomba-Jaswa E et al. Solar water disinfection (SODIS): a review from bench-top to roof-top. J Hazard Mater 2012;235-236:29–46 [CrossRef][PubMed]
    [Google Scholar]
  61. Kramer GF, Ames BN. Oxidative mechanisms of toxicity of low-intensity near-UV light in Salmonella typhimurium. J Bacteriol 1987;169:2259–2266 [CrossRef][PubMed]
    [Google Scholar]
  62. Lourenço RF, Gomes SL. The transcriptional response to cadmium, organic hydroperoxide, singlet oxygen and UV-A mediated by the σE-ChrR system in Caulobacter crescentus. Mol Microbiol 2009;72:1159–1170 [CrossRef][PubMed]
    [Google Scholar]
  63. Nuss AM, Adnan F, Weber L, Berghoff BA, Glaeser J et al. DegS and RseP homologous proteases are involved in singlet oxygen dependent activation of RpoE in Rhodobacter sphaeroides. PLoS One 2013;8:e79520 [CrossRef][PubMed]
    [Google Scholar]
  64. Caldeira de Araujo A, Favre A. Near ultraviolet DNA damage induces the SOS responses in Escherichia coli. Embo J 1986;5:175–179[PubMed]
    [Google Scholar]
  65. Li J, Overall CC, Johnson RC, Jones MB, McDermott JE et al. ChIP-Seq analysis of the σE regulon of Salmonella enterica serovar Typhimurium reveals new New implicated in heat shock and oxidative stress response. PLoS One 2015;10:e0138466 [CrossRef][PubMed]
    [Google Scholar]
  66. Clokie MR, Millard AD, Letarov AV, Heaphy S. Phages in nature. Bacteriophage 2011;1:31–45 [CrossRef][PubMed]
    [Google Scholar]
  67. Imamovic L, Martínez-Castillo A, Benavides C, Muniesa M. BaeSR, involved in envelope stress response, protects against lysogenic conversion by Shiga toxin 2-encoding phages. Infect Immun 2015;83:1451–1457 [CrossRef][PubMed]
    [Google Scholar]
  68. Kropinski AM, Sulakvelidze A, Konczy P, Poppe C. Salmonella phages and prophages–genomics and practical aspects. Methods Mol Biol 2007;394:133–175 [CrossRef][PubMed]
    [Google Scholar]
  69. Baxa U, Steinbacher S, Miller S, Weintraub A, Huber R et al. Interactions of phage P22 tails with their cellular receptor, Salmonella O-antigen polysaccharide. Biophys J 1996;71:2040–2048 [CrossRef][PubMed]
    [Google Scholar]
  70. Steinbacher S, Baxa U, Miller S, Weintraub A, Seckler R et al. Crystal structure of phage P22 tailspike protein complexed with Salmonella sp. O-antigen receptors. Proc Natl Acad Sci USA 1996;93:10584–10588 [CrossRef][PubMed]
    [Google Scholar]
  71. Andres D, Hanke C, Baxa U, Seul A, Barbirz S et al. Tailspike interactions with lipopolysaccharide effect DNA ejection from phage P22 particles in vitro. J Biol Chem 2010;285:36768–36775 [CrossRef][PubMed]
    [Google Scholar]
  72. Levina N, Tötemeyer S, Stokes NR, Louis P, Jones MA et al. Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. Embo J 1999;18:1730–1737 [CrossRef][PubMed]
    [Google Scholar]
  73. Berrier C, Coulombe A, Szabo I, Zoratti M, Ghazi A. Gadolinium ion inhibits loss of metabolites induced by osmotic shock and large stretch-activated channels in bacteria. Eur J Biochem 1992;206:559–565 [CrossRef][PubMed]
    [Google Scholar]
  74. Sukharev S. Purification of the small mechanosensitive channel of Escherichia coli (MscS): the subunit structure, conduction, and gating characteristics in liposomes. Biophys J 2002;83:290–298 [CrossRef][PubMed]
    [Google Scholar]
  75. Sukharev SI, Sigurdson WJ, Kung C, Sachs F. Energetic and spatial parameters for gating of the bacterial large conductance mechanosensitive channel, MscL. J Gen Physiol 1999;113:525–540 [CrossRef][PubMed]
    [Google Scholar]
  76. Stokes NR, Murray HD, Subramaniam C, Gourse RL, Louis P et al. A role for mechanosensitive channels in survival of stationary phase: regulation of channel expression by RpoS. Proc Natl Acad Sci USA 2003;100:15959–15964 [CrossRef][PubMed]
    [Google Scholar]
  77. Bhagwat AA, Jun W, Liu L, Kannan P, Dharne M et al. Osmoregulated periplasmic glucans of Salmonella enterica serovar Typhimurium are required for optimal virulence in mice. Microbiology 2009;155:229–237 [CrossRef][PubMed]
    [Google Scholar]
  78. Cuny C, Lesbats M, Dukan S. Induction of a global stress response during the first step of Escherichia coli plate growth. Appl Environ Microbiol 2007;73:885–889 [CrossRef][PubMed]
    [Google Scholar]
  79. Hayden JD, Ades SE. The extracytoplasmic stress factor, σE, is required to maintain cell envelope integrity in Escherichia coli. PLoS One 2008;3:e1573 [CrossRef][PubMed]
    [Google Scholar]
  80. Liu D, Reeves PR. Escherichia coli K12 regains its O antigen. Microbiology 1994;140:49–57 [CrossRef][PubMed]
    [Google Scholar]
  81. Stevenson G, Neal B, Liu D, Hobbs M, Packer NH et al. Structure of the O antigen of Escherichia coli K-12 and the sequence of its rfb gene cluster. J Bacteriol 1994;176:4144–4156 [CrossRef][PubMed]
    [Google Scholar]
  82. Garmiri P, Coles KE, Humphrey TJ, Cogan TA. Role of outer membrane lipopolysaccharides in the protection of Salmonella enterica serovar Typhimurium from desiccation damage. FEMS Microbiol Lett 2008;281:155–159 [CrossRef][PubMed]
    [Google Scholar]
  83. Papo N, Shai Y. A molecular mechanism for lipopolysaccharide protection of Gram-negative bacteria from antimicrobial peptides. J Biol Chem 2005;280:10378–10387 [CrossRef][PubMed]
    [Google Scholar]
  84. Liang-Takasaki CJ, Saxén H, Mäkelä PH, Leive L. Complement activation by polysaccharide of lipopolysaccharide: an important virulence determinant of salmonellae. Infect Immun 1983;41:563–569[PubMed]
    [Google Scholar]
  85. Bäumler AJ, Kusters JG, Stojiljkovic I, Heffron F. Salmonella typhimurium loci involved in survival within macrophages. Infect Immun 1994;62:1623–1630[PubMed]
    [Google Scholar]
  86. Humphreys S, Stevenson A, Bacon A, Weinhardt AB, Roberts M. The alternative sigma factor, σE, is critically important for the virulence of Salmonella typhimurium. Infect Immun 1999;67:1560–1568[PubMed]
    [Google Scholar]
  87. Eriksson S, Lucchini S, Thompson A, Rhen M, Hinton JC. Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol Microbiol 2003;47:103–118 [CrossRef][PubMed]
    [Google Scholar]
  88. Li J, Overall CC, Nakayasu ES, Kidwai AS, Jones MB et al. Analysis of the Salmonella regulatory network suggests involvement of SsrB and H-NS in σE-regulated SPI-2 gene expression. Front Microbiol 2015;6:27 [CrossRef][PubMed]
    [Google Scholar]
  89. Fang FC, Libby SJ, Buchmeier NA, Loewen PC, Switala J et al. The alternative sigma factor katF (rpoS) regulates Salmonella virulence. Proc Natl Acad Sci USA 1992;89:11978–11982 [CrossRef][PubMed]
    [Google Scholar]
  90. Costa CS, Antón DN. High-level resistance to mecillinam produced by inactivation of soluble lytic transglycosylase in Salmonella enterica serovar Typhimurium. FEMS Microbiol Lett 2006;256:311–317 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000701
Loading
/content/journal/micro/10.1099/mic.0.000701
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error