1887

Abstract

A monooxygenase-encoding gene (Mono) is located in the hypocrellin gene cluster of Shiraia sp. SUPER-H168 and was targeted by a clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system. The ΔMono mutant abolished hypocrellin production, whereas the ΔMono complement mutant restored hypocrellin production. Relative expression levels of the Mono and its adjacent genes were abolished in the ΔMono mutant compared with the wild-type strain. These results indicate the essential role of Mono in hypocrellin biosynthesis. The Mono gene of Shiraia bambusicola was further expressed in Pichia pastoris and salicylate monooxygenase activity was detected, which suggested that this monooxygenase has the ability to catalyse decarboxylative hydroxylation. The relative growth ratio of the ΔMono mutant was significantly improved compared with the wild-type strain. In contrast to the wild-type strain, the ΔMono mutant also represented excellent oxidative stress tolerance after exposure to high concentrations of H2O2 (16 mM) based on the increasing activities of superoxide dismutase, catalase, and glutathione peroxidase. These results suggest that ΔMono mutants could be used as microbial cell factories to produce metabolites that will cause oxidative stress. This study also enhances our understanding of hypocrellin biosynthesis and opens an avenue for decoding the hypocrellin pathway.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000694
2018-07-20
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/164/9/1180.html?itemId=/content/journal/micro/10.1099/mic.0.000694&mimeType=html&fmt=ahah

References

  1. Cheng TF, Jia XM, Ma XH, Lin HP, Zhao YH. Phylogenetic study on Shiraia bambusicola by rDNA sequence analyses. J Basic Microbiol 2004;44:339–350 [CrossRef][PubMed]
    [Google Scholar]
  2. Hino I. Icones Fungorum Bambusicolorum Japonicorum 1961; p.135
    [Google Scholar]
  3. Swart V, Crampton BG, Ridenour JB, Bluhm BH, Olivier NA et al. Complementation of CTB7 in the maize pathogen cercospora zeina overcomes the lack of in vitro cercosporin production. Mol Plant Microbe Interact 2017;30:710–724 [CrossRef][PubMed]
    [Google Scholar]
  4. Chooi YH, Zhang G, Hu J, Muria-Gonzalez MJ, Tran PN et al. Functional genomics-guided discovery of a light-activated phytotoxin in the wheat pathogen Parastagonospora nodorum via pathway activation. Environ Microbiol 2017;19:1975–1986 [CrossRef][PubMed]
    [Google Scholar]
  5. Chen W, Chen Y, Wan X, Friedrichs E, Puff H et al. The structure of hypocrellin and its photo-oxidation product peroxyhyprocrellin. Liebigs Annalen Der Chemie 1981;10:1880–1885
    [Google Scholar]
  6. Cai Y, Liang X, Liao X, Ding Y, Sun J et al. High-yield hypocrellin A production in solid-state fermentation by Shiraia sp. SUPER-H168. Appl Biochem Biotechnol 2010;160:2275–2286 [CrossRef][PubMed]
    [Google Scholar]
  7. Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 2014;32:347–355 [CrossRef][PubMed]
    [Google Scholar]
  8. Gao L, Fei J, Zhao J, Li H, Cui Y et al. Hypocrellin-loaded gold nanocages with high two-photon efficiency for photothermal/photodynamic cancer therapy in vitro. ACS Nano 2012;6:8030–8040 [CrossRef][PubMed]
    [Google Scholar]
  9. Zhao N, Lin X, Qi SS, Luo ZM, Chen SL et al. De novo transcriptome assembly in Shiraia bambusicola to investigate putative genes involved in the biosynthesis of hypocrellin A. Int J Mol Sci 2016;17:311 [CrossRef][PubMed]
    [Google Scholar]
  10. Deng H, Gao R, Liao X, Cai Y. Reference genes selection and relative expression analysis from Shiraia sp. SUPER-H168 productive of hypocrellin. Gene 2016;580:67–72 [CrossRef][PubMed]
    [Google Scholar]
  11. Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014;157:1262–1278 [CrossRef][PubMed]
    [Google Scholar]
  12. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA et al. Genome engineering using the CRISPR-Cas9 system. Nat Protoc 2013;8:2281–2308 [CrossRef][PubMed]
    [Google Scholar]
  13. Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 2014;32:347–355 [CrossRef][PubMed]
    [Google Scholar]
  14. Deng H, Gao R, Liao X, Cai Y. CRISPR system in filamentous fungi: current achievements and future directions. Gene 2017;627:212–221 [CrossRef][PubMed]
    [Google Scholar]
  15. Shi TQ, Liu GN, Ji RY, Shi K, Song P et al. CRISPR/Cas9-based genome editing of the filamentous fungi: the state of the art. Appl Microbiol Biotechnol 2017;101:7435–7443 [CrossRef][PubMed]
    [Google Scholar]
  16. Deng H, Gao R, Liao X, Cai Y. Genome editing in Shiraia bambusicola using CRISPR-Cas9 system. J Biotechnol 2017;259:228–234 [CrossRef][PubMed]
    [Google Scholar]
  17. Deng H, Gao R, Liao X, Cai Y. Characterization of a major facilitator superfamily transporter in Shiraia bambusicola. Res Microbiol 2017;168:664–672 [CrossRef][PubMed]
    [Google Scholar]
  18. Yang H, Wang Y, Zhang Z, Yan R, Zhu D. Whole-genome shotgun assembly and analysis of the genome of Shiraia sp. strain Slf14, a novel endophytic fungus producing huperzine A and hypocrellin A. Genome Announc 2014;2:e00011-14 [CrossRef][PubMed]
    [Google Scholar]
  19. Newman AG, Townsend CA. Molecular characterization of the cercosporin biosynthetic pathway in the fungal plant pathogen Cercospora nicotianae. J Am Chem Soc 2016;138:4219–4228 [CrossRef][PubMed]
    [Google Scholar]
  20. Behnke MS, Khan A, Sibley LD. Genetic mapping reveals that sinefungin resistance in Toxoplasma gondii is controlled by a putative amino acid transporter locus that can be used as a negative selectable marker. Eukaryot Cell 2015;14:140–148 [CrossRef][PubMed]
    [Google Scholar]
  21. Schuster M, Schweizer G, Reissmann S, Kahmann R. Genome editing in Ustilago maydis using the CRISPR-Cas system. Fungal Genet Biol 2016;89:3–9 [CrossRef][PubMed]
    [Google Scholar]
  22. Deng H, Gao R, Chen J, Liao X, Cai Y. An efficient polyethylene glycol-mediated transformation system of lentiviral vector in Shiraia bambusicola. Process Biochem 2016;51:1357–1362 [CrossRef]
    [Google Scholar]
  23. Lu S, Lyngholm L, Yang G, Bronson C, Yoder OC et al. Tagged mutations at the Tox1 locus of Cochliobolus heterostrophus by restriction enzyme-mediated integration. Proc Natl Acad Sci USA 1994;91:12649–12653 [CrossRef][PubMed]
    [Google Scholar]
  24. de Felipe P, Luke GA, Hughes LE, Gani D, Halpin C et al. E unum pluribus: multiple proteins from a self-processing polyprotein. Trends Biotechnol 2006;24:68–75 [CrossRef][PubMed]
    [Google Scholar]
  25. Cai Y, Liao X, Liang X, Ding Y, Sun J et al. Induction of hypocrellin production by Triton X-100 under submerged fermentation with Shiraia sp. SUPER-H168. N Biotechnol 2011;28:588–592 [CrossRef][PubMed]
    [Google Scholar]
  26. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 2009;55:611–622 [CrossRef][PubMed]
    [Google Scholar]
  27. Aebi H. Catalase in vitro. Methods Enzymol 1984;105:121–126[PubMed]
    [Google Scholar]
  28. Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 1974;47:469–474 [CrossRef][PubMed]
    [Google Scholar]
  29. Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 1967;70:158–169[PubMed]
    [Google Scholar]
  30. Zhao H, Chen D, Li Y, Cai B. Overexpression, purification and characterization of a new salicylate hydroxylase from naphthalene-degrading Pseudomonas sp. strain ND6. Microbiol Res 2005;160:307–313 [CrossRef][PubMed]
    [Google Scholar]
  31. Friedland AE, Tzur YB, Esvelt KM, Colaiácovo MP, Church GM et al. Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat Methods 2013;10:741–743 [CrossRef][PubMed]
    [Google Scholar]
  32. Fujii W, Kawasaki K, Sugiura K, Naito K. Efficient generation of large-scale genome-modified mice using gRNA and CAS9 endonuclease. Nucleic Acids Res 2013;41:e187 [CrossRef][PubMed]
    [Google Scholar]
  33. Arazoe T, Miyoshi K, Yamato T, Ogawa T, Ohsato S et al. Tailor-made CRISPR/Cas system for highly efficient targeted gene replacement in the rice blast fungus. Biotechnol Bioeng 2015;112:2543–2549 [CrossRef][PubMed]
    [Google Scholar]
  34. Hu M, Cai Y, Liao X, Hao Z, Liu J. Development of an HPLC method to analyze and prepare elsinochrome C and hypocrellin A in the submerged fermentation broth of Shiria sp. SUPER-H168. Biomed Chromatogr 2012;26:737–742 [CrossRef][PubMed]
    [Google Scholar]
  35. Deng H, Chen J, Gao R, Liao X, Cai Y. Adaptive responses to oxidative stress in the filamentous fungal Shiraia bambusicola. Molecules 2016;21:1118 [CrossRef][PubMed]
    [Google Scholar]
  36. Li Q, Harvey LM, McNeil B. Oxidative stress in industrial fungi. Crit Rev Biotechnol 2009;29:199–213 [CrossRef][PubMed]
    [Google Scholar]
  37. Daub ME, Herrero S, Chung KR. Reactive oxygen species in plant pathogenesis: the role of perylenequinone photosensitizers. Antioxid Redox Signal 2013;19:970–989 [CrossRef][PubMed]
    [Google Scholar]
  38. Trachootham D, Lu W, Ogasawara MA, Nilsa RD, Huang P. Redox regulation of cell survival. Antioxid Redox Signal 2008;10:1343–1374 [CrossRef][PubMed]
    [Google Scholar]
  39. Li Q, McNeil B, Harvey LM. Adaptive response to oxidative stress in the filamentous fungus Aspergillus niger B1-D. Free Radic Biol Med 2008;44:394–402 [CrossRef][PubMed]
    [Google Scholar]
  40. de Castro C, del Valle P, Rúa J, García-Armesto MR, Gutiérrez-Larraínzar M et al. Antioxidant defence system during exponential and stationary growth phases of Phycomyces blakesleeanus: response to oxidative stress by hydrogen peroxide. Fungal Biol 2013;117:275–287 [CrossRef][PubMed]
    [Google Scholar]
  41. Franco R, Cidlowski JA. Glutathione efflux and cell death. Antioxid Redox Signal 2012;17:1694–1713 [CrossRef][PubMed]
    [Google Scholar]
  42. Corsello MA, Garg NK. Synthetic chemistry fuels interdisciplinary approaches to the production of artemisinin. Nat Prod Rep 2015;32:359–366 [CrossRef][PubMed]
    [Google Scholar]
  43. Skorokhod OA, Davalos-Schafler D, Gallo V, Valente E, Ulliers D et al. Oxidative stress-mediated antimalarial activity of plakortin, a natural endoperoxide from the tropical sponge Plakortis simplex. Free Radic Biol Med 2015;89:624–637 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000694
Loading
/content/journal/micro/10.1099/mic.0.000694
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error