1887

Abstract

In natural environments most bacteria live in biofilms embedded in complex matrices of extracellular polymeric substances (EPS). This lifestyle is known to increase protection against environmental stress. Pseudomonas putida mt-2 harbours genes for the production of at least four different EPS polysaccharides, including alginate and cellulose. Little is known about the functional properties of cellulose, while alginate attenuates the accumulation of reactive oxygen species (ROS) caused by matric stress. By using mutants that are deficient in either alginate or cellulose production we show that even cellulose attenuates the accumulation of matric stress-induced ROS for cells in biofilms. Further, both cellulose and alginate attenuate ROS generated through exposure to copper. Interestingly, the two EPS polysaccharides protect cells in both liquid culture and in biofilms against ROS caused by matric stress, indicating that cellulose and alginate do not need to be produced as an integral part of the biofilm lifestyle to provide tolerance towards environmental stressors.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000667
2018-05-08
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/164/6/883.html?itemId=/content/journal/micro/10.1099/mic.0.000667&mimeType=html&fmt=ahah

References

  1. Imlay JA. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol 2013; 11: 443– 454 [CrossRef] [PubMed]
    [Google Scholar]
  2. Chang WS, Li X, Halverson LJ. Influence of water limitation on endogenous oxidative stress and cell death within unsaturated Pseudomonas putida biofilms. Environ Microbiol 2009; 11: 1482– 1492 [CrossRef] [PubMed]
    [Google Scholar]
  3. Svenningsen NB, Pérez-Pantoja D, Nikel PI, Nicolaisen MH, de Lorenzo V et al. Pseudomonas putida mt-2 tolerates reactive oxygen species generated during matric stress by inducing a major oxidative defense response. BMC Microbiol 2015; 15: 202 [CrossRef] [PubMed]
    [Google Scholar]
  4. Potts M. Desiccation tolerance of prokaryotes. Microbiol Rev 1994; 58: 755– 803 [PubMed]
    [Google Scholar]
  5. Sikora AE, Beyhan S, Bagdasarian M, Yildiz FH, Sandkvist M. Cell envelope perturbation induces oxidative stress and changes in iron homeostasis in Vibrio cholera. J Bacteriol 2009; 191: 5398– 5408 [CrossRef] [PubMed]
    [Google Scholar]
  6. Mantovi P, Bonazzi G, Maestri E, Marmiroli N. Accumulation of copper and zinc from liquid manure in agricultural soils and crop plants. Plant Soil 2003; 250: 249– 257 [CrossRef]
    [Google Scholar]
  7. Lemire JA, Harrison JJ, Turner RJ. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 2013; 11: 371– 384 [CrossRef] [PubMed]
    [Google Scholar]
  8. Svenningsen NB, Damgaard M, Rasmussen M, Pérez-Pantoja D, Nybroe O et al. Cupriavidus pinatubonensis AEO106 deals with copper-induced oxidative stress before engaging in biodegradation of the herbicide 4-chloro-2-methylphenoxyacetic acid. BMC Microbiol 2017; 17: 211 [CrossRef] [PubMed]
    [Google Scholar]
  9. Liochev SI, Fridovich I. Copper, zinc superoxide dismutase and H2O2. Effects of bicarbonate on inactivation and oxidations of NADPH and urate, and on consumption of H2O2. J Biol Chem 2002; 277: 34674– 34678 [CrossRef] [PubMed]
    [Google Scholar]
  10. Macomber L, Imlay JA. The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc Natl Acad Sci USA 2009; 106: 8344– 8349 [CrossRef] [PubMed]
    [Google Scholar]
  11. Cabiscol E, Tamarit J, Ros J. Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol 2000; 3: 3– 8 [PubMed]
    [Google Scholar]
  12. Gambino M, Cappitelli F. Mini-review: biofilm responses to oxidative stress. Biofouling 2016; 32: 167– 178 [CrossRef] [PubMed]
    [Google Scholar]
  13. Soule T, Shipe D, Lothamer J. Extracellular polysaccharide production in a scytonemin-deficient mutant of Nostoc punctiforme under UVA and oxidative stress. Curr Microbiol 2016; 73: 455– 462 [CrossRef] [PubMed]
    [Google Scholar]
  14. Sørensen J, Jensen LE, Nybroe O. Soil and rhizosphere as habitats for Pseudomonas inoculants: new knowledge on distribution, activity and physiological state derived from micro-scale and single-cell studies. Plant Soil 2001; 232: 97– 108 [CrossRef]
    [Google Scholar]
  15. Poblete-Castro I, Becker J, Dohnt K, Dos Santos VM, Wittmann C. Industrial biotechnology of Pseudomonas putida and related species. Appl Microbiol Biotechnol 2012; 93: 2279– 2290 [CrossRef] [PubMed]
    [Google Scholar]
  16. Chang WS, van de Mortel M, Nielsen L, Nino de Guzman G, Li X et al. Alginate production by Pseudomonas putida creates a hydrated microenvironment and contributes to biofilm architecture and stress tolerance under water-limiting conditions. J Bacteriol 2007; 189: 8290– 8299 [CrossRef] [PubMed]
    [Google Scholar]
  17. Nielsen L, Li X, Halverson LJ. Cell-cell and cell-surface interactions mediated by cellulose and a novel exopolysaccharide contribute to Pseudomonas putida biofilm formation and fitness under water-limiting conditions. Environ Microbiol 2011; 13: 1342– 1356 [CrossRef] [PubMed]
    [Google Scholar]
  18. Nilsson M, Chiang WC, Fazli M, Gjermansen M, Givskov M et al. Influence of putative exopolysaccharide genes on Pseudomonas putida KT2440 biofilm stability. Environ Microbiol 2011; 13: 1357– 1369 [CrossRef] [PubMed]
    [Google Scholar]
  19. Bonnichsen L, Bygvraa Svenningsen N, Rybtke M, de Bruijn I, Raaijmakers JM et al. Lipopeptide biosurfactant viscosin enhances dispersal of Pseudomonas fluorescens SBW25 biofilms. Microbiology 2015; 161: 2289– 2297 [CrossRef] [PubMed]
    [Google Scholar]
  20. Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol 2010; 8: 623– 633 [CrossRef] [PubMed]
    [Google Scholar]
  21. Mann EE, Wozniak DJ. Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiol Rev 2012; 36: 893– 916 [CrossRef] [PubMed]
    [Google Scholar]
  22. Kidambi SP, Sundin GW, Palmer DA, Chakrabarty AM, Bender CL. Copper as a signal for alginate synthesis in Pseudomonas syringae pv. syringae. Appl Environ Microbiol 1995; 61: 2172– 2179 [PubMed]
    [Google Scholar]
  23. Poirier I, Hammann P, Kuhn L, Bertrand M. Strategies developed by the marine bacterium Pseudomonas fluorescens BA3SM1 to resist metals: a proteome analysis. Aquat Toxicol 2013; 128-129: 215– 232 [CrossRef] [PubMed]
    [Google Scholar]
  24. Teitzel GM, Parsek MR. Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl Environ Microbiol 2003; 69: 2313– 2320 [CrossRef] [PubMed]
    [Google Scholar]
  25. Li X, Nielsen L, Nolan C, Halverson LJ. Transient alginate gene expression by Pseudomonas putida biofilm residents under water-limiting conditions reflects adaptation to the local environment. Environ Microbiol 2010; 12: 1578– 1590 [CrossRef] [PubMed]
    [Google Scholar]
  26. Gulez G, Altıntaş A, Fazli M, Dechesne A, Workman CT et al. Colony morphology and transcriptome profiling of Pseudomonas putida KT2440 and its mutants deficient in alginate or all EPS synthesis under controlled matric potentials. Microbiologyopen 2014; 3: 457– 469 [CrossRef] [PubMed]
    [Google Scholar]
  27. Gal M, Preston GM, Massey RC, Spiers AJ, Rainey PB. Genes encoding a cellulosic polymer contribute toward the ecological success of Pseudomonas fluorescens SBW25 on plant surfaces. Mol Ecol 2003; 12: 3109– 3121 [CrossRef] [PubMed]
    [Google Scholar]
  28. Vorholt JA. Microbial life in the phyllosphere. Nat Rev Microbiol 2012; 10: 828– 840 [CrossRef] [PubMed]
    [Google Scholar]
  29. Espinosa-Urgel M, Kolter R, Ramos JL. Root colonization by Pseudomonas putida: love at first sight. Microbiology 2002; 148: 341– 343 [CrossRef] [PubMed]
    [Google Scholar]
  30. de Lorenzo V, Pieper D, Ramos JL. From the test tube to the environment – and back. Environ Microbiol 2013; 15: 6– 11 [CrossRef] [PubMed]
    [Google Scholar]
  31. Martínez-García E, de Lorenzo V. Engineering multiple genomic deletions in Gram-negative bacteria: analysis of the multi-resistant antibiotic profile of Pseudomonas putida KT2440. Environ Microbiol 2011; 13: 2702– 2716 [CrossRef] [PubMed]
    [Google Scholar]
  32. Martínez-García E, de Lorenzo V. Transposon-based and plasmid-based genetic tools for editing genomes of Gram-negative bacteria. Methods Mol Biol 2012; 813: 267– 283 [CrossRef] [PubMed]
    [Google Scholar]
  33. Gerhardt P, Murray RGE, Wood WA, Krieg NR. Methods for General and Molecular Bacteriology Washington, DC: ASM Press; 1994
    [Google Scholar]
  34. Holden PA. Biofilms in unsaturated environments. Methods Enzymol 2001; 337: 125– 143 [PubMed] [Crossref]
    [Google Scholar]
  35. de Roy K, Clement L, Thas O, Wang Y, Boon N. Flow cytometry for fast microbial community fingerprinting. Water Res 2012; 46: 907– 919 [CrossRef] [PubMed]
    [Google Scholar]
  36. Schrecker ST, Gostomski PA. Determining the water holding capacity of microbial cellulose. Biotechnol Lett 2005; 27: 1435– 1438 [CrossRef] [PubMed]
    [Google Scholar]
  37. Gülez G, Dechesne A, Workman CT, Smets BF. Transcriptome dynamics of Pseudomonas putida KT2440 under water stress. Appl Environ Microbiol 2012; 78: 676– 683 [CrossRef] [PubMed]
    [Google Scholar]
  38. Spiers AJ, Deeni YY, Folorunso AO, Koza A, Moshynets O et al. Cellulose expression in Pseudomonas fluorescens SBW25 and other environmental pseudomonads. In van de Ven TGM. (editor) Cellulose – Medical, Pharmaceutical and Electronic Applications Chapter: 1 InTech; 2013; pp. 1– 26
    [Google Scholar]
  39. Rainey PB. Adaptation of Pseudomonas fluorescens to the plant rhizosphere. Environ Microbiol 1999; 1: 243– 257 [CrossRef] [PubMed]
    [Google Scholar]
  40. Lau TC, Xa W, Chua H, Qian PY, Wong PK. Effect of exopolysaccharides on the adsorption of metal ions by Pseudomonas sp. CU-1. Wat Sci Technol 2003; 52: 63– 68 [Crossref]
    [Google Scholar]
  41. Fang L, Wei X, Cai P, Huang Q, Chen H et al. Role of extracellular polymeric substances in Cu(II) adsorption on Bacillus subtilis and Pseudomonas putida. Bioresour Technol 2011; 102: 1137– 1141 [CrossRef] [PubMed]
    [Google Scholar]
  42. van de Mortel M, Halverson LJ. Cell envelope components contributing to biofilm growth and survival of Pseudomonas putida in low-water-content habitats. Mol Microbiol 2004; 52: 735– 750 [CrossRef] [PubMed]
    [Google Scholar]
  43. Schmitt J, Nivens D, White DC, Flemming HC. Changes of biofilm properties in response to sorbed substances — an FTIR-ATR-study. Water Sci Technol 1995; 32: 149– 155 [Crossref]
    [Google Scholar]
  44. Domínguez-Cuevas P, González-Pastor JE, Marqués S, Ramos JL, de Lorenzo V. Transcriptional tradeoff between metabolic and stress-response programs in Pseudomonas putida KT2440 cells exposed to toluene. J Biol Chem 2006; 281: 11981– 11991 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000667
Loading
/content/journal/micro/10.1099/mic.0.000667
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error