1887

Abstract

A large number of antisense transcripts have been detected in diverse microbial genomes and considerable effort has been devoted to elucidating the functional role of antisense transcription. In this study, we reanalysed extensive RNA sequencing data from the opportunistic pathogen and found that the majority of genes have a propensity for antisense transcription. Although antisense transcripts were found in more than 80 % of the genes of the genome, the majority of sequencing reads were mapping sense and only a minority (<2 %) were mapping antisense to genes. Similarly to the sense expression levels, the antisense expression levels varied under different environmental conditions, with the sense and antisense expression levels often being inversely regulated and modulated by the activity of alternative sigma factors. Environment-modulated antisense transcription showed a bias towards being antisense to genes within regions of genomic plasticity and to those encoding small regulatory RNAs. In the future, the validation and functional characterization of antisense transcripts, and novel transcripts that are antisense to small regulatory RNAs in particular, have the potential to contribute to our understanding of the various levels of transcriptional regulation and its dynamics in the bacterial pathogen .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000664
2018-06-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/164/6/889.html?itemId=/content/journal/micro/10.1099/mic.0.000664&mimeType=html&fmt=ahah

References

  1. Georg J, Hess WR. cis-antisense RNA, another level of gene regulation in bacteria. Microbiol Mol Biol Rev 2011;75:286–300 [CrossRef][PubMed]
    [Google Scholar]
  2. Sorek R, Cossart P. Prokaryotic transcriptomics: a new view on regulation, physiology and pathogenicity. Nat Rev Genet 2010;11:9–16 [CrossRef][PubMed]
    [Google Scholar]
  3. Thomason MK, Storz G. Bacterial antisense RNAs: how many are there, and what are they doing?. Annu Rev Genet 2010;44:167–188 [CrossRef][PubMed]
    [Google Scholar]
  4. Güell M, van Noort V, Yus E, Chen WH, Leigh-Bell J et al. Transcriptome complexity in a genome-reduced bacterium. Science 2009;326:1268–1271 [CrossRef][PubMed]
    [Google Scholar]
  5. Dornenburg JE, Devita AM, Palumbo MJ, Wade JT. Widespread antisense transcription in Escherichia coli. MBio 2010;1:e00024-10 [CrossRef][PubMed]
    [Google Scholar]
  6. Sharma CM, Hoffmann S, Darfeuille F, Reignier J, Findeiss S et al. The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 2010;464:250–255 [CrossRef][PubMed]
    [Google Scholar]
  7. Rasmussen S, Nielsen HB, Jarmer H. The transcriptionally active regions in the genome of Bacillus subtilis. Mol Microbiol 2009;73:1043–1057 [CrossRef][PubMed]
    [Google Scholar]
  8. van der Meulen SB, de Jong A, Kok J. Transcriptome landscape of Lactococcus lactis reveals many novel RNAs including a small regulatory RNA involved in carbon uptake and metabolism. RNA Biol 2016;13:353–366 [CrossRef][PubMed]
    [Google Scholar]
  9. Lybecker M, Zimmermann B, Bilusic I, Tukhtubaeva N, Schroeder R. The double-stranded transcriptome of Escherichia coli. Proc Natl Acad Sci USA 2014;111:3134–3139 [CrossRef][PubMed]
    [Google Scholar]
  10. Lybecker M, Bilusic I, Raghavan R. Pervasive transcription: detecting functional RNAs in bacteria. Transcription 2014;5:e944039 [CrossRef][PubMed]
    [Google Scholar]
  11. Mendoza-Vargas A, Olvera L, Olvera M, Grande R, Vega-Alvarado L et al. Genome-wide identification of transcription start sites, promoters and transcription factor binding sites in E. coli. PLoS One 2009;4:e7526 [CrossRef][PubMed]
    [Google Scholar]
  12. Wade JT, Grainger DC. Pervasive transcription: illuminating the dark matter of bacterial transcriptomes. Nat Rev Microbiol 2014;12:647–653 [CrossRef][PubMed]
    [Google Scholar]
  13. Lenstra TL, Coulon A, Chow CC, Larson DR. Single-molecule imaging reveals a switch between spurious and functional ncRNA transcription. Mol Cell 2015;60:597–610 [CrossRef][PubMed]
    [Google Scholar]
  14. Lloréns-Rico V, Cano J, Kamminga T, Gil R, Latorre A et al. Bacterial antisense RNAs are mainly the product of transcriptional noise. Sci Adv 2016;2:e1501363 [CrossRef][PubMed]
    [Google Scholar]
  15. Faghihi MA, Wahlestedt C. Regulatory roles of natural antisense transcripts. Nat Rev Mol Cell Biol 2009;10:637–643 [CrossRef][PubMed]
    [Google Scholar]
  16. Caldelari I, Chao Y, Romby P, Vogel J. RNA-mediated regulation in pathogenic bacteria. Cold Spring Harb Perspect Med 2013;3:a010298 [CrossRef][PubMed]
    [Google Scholar]
  17. Waters LS, Storz G. Regulatory RNAs in bacteria. Cell 2009;136:615–628 [CrossRef][PubMed]
    [Google Scholar]
  18. Narberhaus F. Translational control of bacterial heat shock and virulence genes by temperature-sensing mRNAs. RNA Biol 2010;7:84–89 [CrossRef][PubMed]
    [Google Scholar]
  19. Böhme K, Steinmann R, Kortmann J, Seekircher S, Heroven AK et al. Concerted actions of a thermo-labile regulator and a unique intergenic RNA thermosensor control Yersinia virulence. PLoS Pathog 2012;8:e1002518 [CrossRef][PubMed]
    [Google Scholar]
  20. Ramesh A, Winkler WC. Magnesium-sensing riboswitches in bacteria. RNA Biol 2010;7:77–83 [CrossRef][PubMed]
    [Google Scholar]
  21. Jäger D, Sharma CM, Thomsen J, Ehlers C, Vogel J et al. Deep sequencing analysis of the Methanosarcina mazei Gö1 transcriptome in response to nitrogen availability. Proc Natl Acad Sci USA 2009;106:21878–21882 [CrossRef][PubMed]
    [Google Scholar]
  22. Jensen TH, Jacquier A, Libri D. Dealing with pervasive transcription. Mol Cell 2013;52:473–484 [CrossRef][PubMed]
    [Google Scholar]
  23. Bordoy AE, Chatterjee A. Cis-antisense transcription gives rise to tunable genetic switch behavior: a mathematical modeling approach. PLoS One 2015;10:e0133873 [CrossRef][PubMed]
    [Google Scholar]
  24. Wen Y, Feng J, Sachs G. Helicobacter pylori 5'ureB-sRNA, a cis-encoded antisense small RNA, negatively regulates ureAB expression by transcription termination. J Bacteriol 2013;195:444–452 [CrossRef][PubMed]
    [Google Scholar]
  25. Brantl S. Regulatory mechanisms employed by cis-encoded antisense RNAs. Curr Opin Microbiol 2007;10:102–109 [CrossRef][PubMed]
    [Google Scholar]
  26. Dötsch A, Schniederjans M, Khaledi A, Hornischer K, Schulz S et al. The Pseudomonas aeruginosa transcriptional landscape is shaped by environmental heterogeneity and genetic variation. MBio 2015;6:e00749 [CrossRef][PubMed]
    [Google Scholar]
  27. Schulz S, Eckweiler D, Bielecka A, Nicolai T, Franke R et al. Elucidation of sigma factor-associated networks in Pseudomonas aeruginosa reveals a modular architecture with limited and function-specific crosstalk. PLoS Pathog 2015;11:e1004744 [CrossRef][PubMed]
    [Google Scholar]
  28. Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol 2010;11:R106 [CrossRef][PubMed]
    [Google Scholar]
  29. Blanka A, Schulz S, Eckweiler D, Franke R, Bielecka A et al. Identification of the alternative sigma factor SigX regulon and its implications for Pseudomonas aeruginosa pathogenicity. J Bacteriol 2014;196:345–356 [CrossRef][PubMed]
    [Google Scholar]
  30. Bailey TL, Gribskov M. Combining evidence using p-values: application to sequence homology searches. Bioinformatics 1998;14:48–54 [CrossRef][PubMed]
    [Google Scholar]
  31. Gómez-Lozano M, Marvig RL, Tulstrup MV, Molin S. Expression of antisense small RNAs in response to stress in Pseudomonas aeruginosa. BMC Genomics 2014;15:783 [CrossRef][PubMed]
    [Google Scholar]
  32. Wurtzel O, Yoder-Himes DR, Han K, Dandekar AA, Edelheit S et al. The single-nucleotide resolution transcriptome of Pseudomonas aeruginosa grown in body temperature. PLoS Pathog 2012;8:e1002945 [CrossRef][PubMed]
    [Google Scholar]
  33. Ferrara S, Brugnoli M, de Bonis A, Righetti F, Delvillani F et al. Comparative profiling of Pseudomonas aeruginosa strains reveals differential expression of novel unique and conserved small RNAs. PLoS One 2012;7:e36553 [CrossRef][PubMed]
    [Google Scholar]
  34. Selinger DW, Cheung KJ, Mei R, Johansson EM, Richmond CS et al. RNA expression analysis using a 30 base pair resolution Escherichia coli genome array. Nat Biotechnol 2000;18:1262–1268 [CrossRef][PubMed]
    [Google Scholar]
  35. Georg J, Voss B, Scholz I, Mitschke J, Wilde A et al. Evidence for a major role of antisense RNAs in cyanobacterial gene regulation. Mol Syst Biol 2009;5:305 [CrossRef][PubMed]
    [Google Scholar]
  36. Nicolas P, Mäder U, Dervyn E, Rochat T, Leduc A et al. Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science 2012;335:1103–1106 [CrossRef][PubMed]
    [Google Scholar]
  37. Beaume M, Hernandez D, Farinelli L, Deluen C, Linder P et al. Cartography of methicillin-resistant S. aureus transcripts: detection, orientation and temporal expression during growth phase and stress conditions. PLoS One 2010;5:e10725 [CrossRef][PubMed]
    [Google Scholar]
  38. Cho BK, Zengler K, Qiu Y, Park YS, Knight EM et al. The transcription unit architecture of the Escherichia coli genome. Nat Biotechnol 2009;27:1043–1049 [CrossRef][PubMed]
    [Google Scholar]
  39. Filiatrault MJ, Stodghill PV, Bronstein PA, Moll S, Lindeberg M et al. Transcriptome analysis of Pseudomonas syringae identifies new genes, noncoding RNAs, and antisense activity. J Bacteriol 2010;192:2359–2372 [CrossRef][PubMed]
    [Google Scholar]
  40. James K, Cockell SJ, Zenkin N. Deep sequencing approaches for the analysis of prokaryotic transcriptional boundaries and dynamics. Methods 2017;120:76–84 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000664
Loading
/content/journal/micro/10.1099/mic.0.000664
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error