1887

Abstract

Genes encoding dodecin proteins are present in almost 20 % of archaeal and in more than 50 % of bacterial genomes. Archaeal dodecins bind riboflavin (vitamin B2), are thought to play a role in flavin homeostasis and possibly also help to protect cells from radical or oxygenic stress. Bacterial dodecins were found to bind riboflavin-5′-phosphate (also called flavin mononucleotide or FMN) and coenzyme A, but their physiological function remained unknown. In this study, we set out to investigate the relevance of dodecins for flavin metabolism and oxidative stress management in the phylogenetically related bacteria Streptomyces coelicolor and Streptomyces davawensis. Additionally, we explored the role of dodecins with regard to resistance against the antibiotic roseoflavin, a riboflavin analogue produced by S. davawensis. Our results show that the dodecin of S. davawensis predominantly binds FMN and is neither involved in roseoflavin biosynthesis nor in roseoflavin resistance. In contrast to S. davawensis, growth of S. coelicolor was not reduced in the presence of plumbagin, a compound, which induces oxidative stress. Plumbagin treatment stimulated expression of the dodecin gene in S. davawensis but not in S. coelicolor. Deletion of the dodecin gene in S. davawensis generated a recombinant strain which, in contrast to the wild-type, was fully resistant to plumbagin. Subsequent metabolome analyses revealed that the S. davawensis dodecin deletion strain exhibited a very different stress response when compared to the wild-type indicating that dodecins broadly affect cellular physiology.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000662
2018-06-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/164/6/908.html?itemId=/content/journal/micro/10.1099/mic.0.000662&mimeType=html&fmt=ahah

References

  1. Fischer M, Bacher A. Biosynthesis of flavocoenzymes. Nat Prod Rep 2005; 22: 324– 350 [CrossRef] [PubMed]
    [Google Scholar]
  2. Fraaije MW, Mattevi A. Flavoenzymes: diverse catalysts with recurrent features. Trends Biochem Sci 2000; 25: 126– 132 [CrossRef] [PubMed]
    [Google Scholar]
  3. Macheroux P, Kappes B, Ealick SE. Flavogenomics – a genomic and structural view of flavin-dependent proteins. Febs J 2011; 278: 2625– 2634 [CrossRef] [PubMed]
    [Google Scholar]
  4. Bieger B, Essen LO, Oesterhelt D. Crystal structure of halophilic dodecin: a novel, dodecameric flavin binding protein from Halobacterium salinarum. Structure 2003; 11: 375– 385 [PubMed] [Crossref]
    [Google Scholar]
  5. Grininger M, Staudt H, Johansson P, Wachtveitl J, Oesterhelt D. Dodecin is the key player in flavin homeostasis of archaea. J Biol Chem 2009; 284: 13068– 13076 [CrossRef] [PubMed]
    [Google Scholar]
  6. Meissner B, Schleicher E, Weber S, Essen LO. The dodecin from Thermus thermophilus, a bifunctional cofactor storage protein. J Biol Chem 2007; 282: 33142– 33154 [CrossRef] [PubMed]
    [Google Scholar]
  7. Liu F, Xiong J, Kumar S, Yang C, Ge S et al. Structural and biophysical characterization of Mycobacterium tuberculosis dodecin Rv1498A. J Struct Biol 2011; 175: 31– 38 [CrossRef] [PubMed]
    [Google Scholar]
  8. Vinzenz X, Grosse W, Linne U, Meissner B, Essen LO. Chemical engineering of Mycobacterium tuberculosis dodecin hybrids. Chem Commun 2011; 47: 11071– 11073 [CrossRef] [PubMed]
    [Google Scholar]
  9. Abbas CA, Sibirny AA. Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers. Microbiol Mol Biol Rev 2011; 75: 321– 360 [CrossRef] [PubMed]
    [Google Scholar]
  10. Staudt H, Oesterhelt D, Grininger M, Wachtveitl J. Ultrafast excited-state deactivation of flavins bound to dodecin. J Biol Chem 2012; 287: 17637– 17644 [CrossRef] [PubMed]
    [Google Scholar]
  11. Jankowitsch F, Schwarz J, Rückert C, Gust B, Szczepanowski R et al. Genome sequence of the bacterium Streptomyces davawensis JCM 4913 and heterologous production of the unique antibiotic roseoflavin. J Bacteriol 2012; 194: 6818– 6827 [CrossRef] [PubMed]
    [Google Scholar]
  12. Otani S, Takatsu M, Nakano M, Kasai S, Miura R. Letter: Roseoflavin, a new antimicrobial pigment from Streptomyces. J Antibiot 1974; 27: 88– 89 [CrossRef] [PubMed]
    [Google Scholar]
  13. Pedrolli DB, Matern A, Wang J, Ester M, Siedler K et al. A highly specialized flavin mononucleotide riboswitch responds differently to similar ligands and confers roseoflavin resistance to Streptomyces davawensis. Nucleic Acids Res 2012; 40: 8662– 8673 [CrossRef] [PubMed]
    [Google Scholar]
  14. Lee ER, Blount KF, Breaker RR. Roseoflavin is a natural antibacterial compound that binds to FMN riboswitches and regulates gene expression. RNA Biol 2009; 6: 187– 194 [CrossRef] [PubMed]
    [Google Scholar]
  15. Ott E, Stolz J, Lehmann M, Mack M. The RFN riboswitch of Bacillus subtilis is a target for the antibiotic roseoflavin produced by Streptomyces davawensis. RNA Biol 2009; 6: 276– 280 [CrossRef] [PubMed]
    [Google Scholar]
  16. Wang H, Mann PA, Xiao L, Gill C, Galgoci AM et al. Dual-targeting small-molecule inhibitors of the Staphylococcus aureus FMN Riboswitch disrupt riboflavin homeostasis in an infectious setting. Cell Chem Biol 2017; 24: 576– 588 [CrossRef] [PubMed]
    [Google Scholar]
  17. Langer S, Hashimoto M, Hobl B, Mathes T, Mack M. Flavoproteins are potential targets for the antibiotic roseoflavin in Escherichia coli. J Bacteriol 2013; 195: 4037– 4045 [CrossRef] [PubMed]
    [Google Scholar]
  18. Langer S, Nakanishi S, Mathes T, Knaus T, Binter A et al. The flavoenzyme azobenzene reductase AzoR from Escherichia coli binds roseoflavin mononucleotide (RoFMN) with high affinity and is less active in its RoFMN form. Biochemistry 2013; 52: 4288– 4295 [CrossRef] [PubMed]
    [Google Scholar]
  19. Pedrolli D, Langer S, Hobl B, Schwarz J, Hashimoto M et al. The ribB FMN riboswitch from Escherichia coli operates at the transcriptional and translational level and regulates riboflavin biosynthesis. Febs J 2015; 282: 3230– 3242 [CrossRef] [PubMed]
    [Google Scholar]
  20. Pedrolli DB, Jankowitsch F, Schwarz J, Langer S, Nakanishi S et al. Natural riboflavin analogs. Methods Mol Biol 2014; 1146: 41– 63 [CrossRef] [PubMed]
    [Google Scholar]
  21. Pedrolli DB, Mack M. Bacterial flavin mononucleotide riboswitches as targets for flavin analogs. Methods Mol Biol 2014; 1103: 165– 176 [CrossRef] [PubMed]
    [Google Scholar]
  22. Imlay JA. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol 2013; 11: 443– 454 [CrossRef] [PubMed]
    [Google Scholar]
  23. Bennett BD, Kimball EH, Gao M, Osterhout R, van Dien SJ et al. Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat Chem Biol 2009; 5: 593– 599 [CrossRef] [PubMed]
    [Google Scholar]
  24. Pedrolli DB, Nakanishi S, Barile M, Mansurova M, Carmona EC et al. The antibiotics roseoflavin and 8-demethyl-8-amino-riboflavin from Streptomyces davawensis are metabolized by human flavokinase and human FAD synthetase. Biochem Pharmacol 2011; 82: 1853– 1859 [CrossRef] [PubMed]
    [Google Scholar]
  25. Zhulin IB. Databases for Microbiologists. J Bacteriol 2015; 197: 2458– 2467 [CrossRef] [PubMed]
    [Google Scholar]
  26. Bertani G. Lysogeny at mid-twentieth century: P1, P2, and other experimental systems. J Bacteriol 2004; 186: 595– 600 [CrossRef] [PubMed]
    [Google Scholar]
  27. Schwarz J, Konjik V, Jankowitsch F, Sandhoff R, Mack M. Identification of the key enzyme of roseoflavin biosynthesis. Angew Chem Int Ed Engl 2016; 55: 6103– 6106 [CrossRef] [PubMed]
    [Google Scholar]
  28. Coppée JY, Auger S, Turlin E, Sekowska A, Le Caer JP et al. Sulfur-limitation-regulated proteins in Bacillus subtilis: a two-dimensional gel electrophoresis study. Microbiology 2001; 147: 1631– 1640 [CrossRef] [PubMed]
    [Google Scholar]
  29. Fuhrer T, Heer D, Begemann B, Zamboni N. High-throughput, accurate mass metabolome profiling of cellular extracts by flow injection-time-of-flight mass spectrometry. Anal Chem 2011; 83: 7074– 7080 [CrossRef] [PubMed]
    [Google Scholar]
  30. Nakajima S, Satoh Y, Yanashima K, Matsui T, Dairi T. Ergothioneine protects Streptomyces coelicolor A3(2) from oxidative stresses. J Biosci Bioeng 2015; 120: 294– 298 [CrossRef] [PubMed]
    [Google Scholar]
  31. Saini V, Cumming BM, Guidry L, Lamprecht DA, Adamson JH et al. Ergothioneine maintains redox and bioenergetic homeostasis essential for drug susceptibility and virulence of Mycobacterium tuberculosis. Cell Rep 2016; 14: 572– 585 [CrossRef] [PubMed]
    [Google Scholar]
  32. Gatewood ML, Bralley P, Weil MR, Jones GH. RNA-Seq and RNA immunoprecipitation analyses of the transcriptome of Streptomyces coelicolor identify substrates for RNase III. J Bacteriol 2012; 194: 2228– 2237 [CrossRef] [PubMed]
    [Google Scholar]
  33. Mathes T, Vogl C, Stolz J, Hegemann P. In vivo generation of flavoproteins with modified cofactors. J Mol Biol 2009; 385: 1511– 1518 [CrossRef] [PubMed]
    [Google Scholar]
  34. Konjik V, Brünle S, Demmer U, Vanselow A, Sandhoff R et al. The crystal structure of RosB: insights into the reaction mechanism of the first member of a family of flavodoxin-like enzymes. Angew Chem Int Ed Engl 2017; 56: 1146– 1151 [CrossRef] [PubMed]
    [Google Scholar]
  35. Grill S, Busenbender S, Pfeiffer M, Köhler U, Mack M. The bifunctional flavokinase/flavin adenine dinucleotide synthetase from Streptomyces davawensis produces inactive flavin cofactors and is not involved in resistance to the antibiotic roseoflavin. J Bacteriol 2008; 190: 1546– 1553 [CrossRef] [PubMed]
    [Google Scholar]
  36. Imlay JA. Diagnosing oxidative stress in bacteria: not as easy as you might think. Curr Opin Microbiol 2015; 24: 124– 131 [CrossRef] [PubMed]
    [Google Scholar]
  37. Farr SB, Natvig DO, Kogoma T. Toxicity and mutagenicity of plumbagin and the induction of a possible new DNA repair pathway in Escherichia coli. J Bacteriol 1985; 164: 1309– 1316 [PubMed]
    [Google Scholar]
  38. Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M et al. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 2014; 42: D199– D205 [CrossRef] [PubMed]
    [Google Scholar]
  39. Park JH, Roe JH. Mycothiol regulates and is regulated by a thiol-specific antisigma factor RsrA and sigma(R) in Streptomyces coelicolor. Mol Microbiol 2008; 68: 861– 870 [CrossRef] [PubMed]
    [Google Scholar]
  40. Patel MP, Blanchard JS. Mycobacterium tuberculosis mycothione reductase: pH dependence of the kinetic parameters and kinetic isotope effects. Biochemistry 2001; 40: 5119– 5126 [CrossRef] [PubMed]
    [Google Scholar]
  41. Gutiérrez Sánchez C, Su Q, Schönherr H, Grininger M, Nöll G. Multi-ligand-binding flavoprotein dodecin as a key element for reversible surface modification in nano-biotechnology. ACS Nano 2015; 9: 3491– 3500 [CrossRef] [PubMed]
    [Google Scholar]
  42. Camus JC, Pryor MJ, Médigue C, Cole ST. Re-annotation of the genome sequence of Mycobacterium tuberculosis H37Rv. Microbiology 2002; 148: 2967– 2973 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000662
Loading
/content/journal/micro/10.1099/mic.0.000662
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Supplementary File 2

Supplementary File 3

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error