1887

Abstract

The human pathogen causes difficult-to-eradicate biofilm-associated infections that generally become chronic. Understanding the genetic regulation of biofilm formation in is central to a precise definition of the conditions and genes involved in development of chronic biofilm-associated infections. Biofilm-related genes have been detected by comparing mutants using the classical submerged biofilm formation assay, in which cells adhere to the bottom of a well containing culture medium. We recently developed an alternative biofilm formation model for , based on macrocolony formation on agar plates, comparable to an assay used to study biofilm formation in a few other bacterial species. As organism features are the result of environmental conditions as well as of genes, we used a genome-wide collection of transposon-mapped mutants in this macrocolony assay to seek developmental genes and pathways not identified by the classical biofilm formation assay. We identified routes related to glucose and purine metabolism and clarified their regulatory link to macrocolony formation. Our study demonstrates that formation of microbial communities must be correlated to specific growth conditions, and the role of metabolism must be considered in biofilm formation and thus, in the development of chronic infections.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000660
2018-05-01
2019-11-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/164/5/801.html?itemId=/content/journal/micro/10.1099/mic.0.000660&mimeType=html&fmt=ahah

References

  1. Stoodley P, Sauer K, Davies DG, Costerton JW. Biofilms as complex differentiated communities. Annu Rev Microbiol 2002;56:187–209 [CrossRef][PubMed]
    [Google Scholar]
  2. de Beer D, Stoodley P, Lewandowski Z. Measurement of local diffusion coefficients in biofilms by microinjection and confocal microscopy. Biotechnol Bioeng 1997;53:151–158 [CrossRef]
    [Google Scholar]
  3. Thurlow LR, Hanke ML, Fritz T, Angle A, Aldrich A et al. Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. J Immunol 2011;186:6585–6596 [CrossRef][PubMed]
    [Google Scholar]
  4. Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol 2010;8:623–633 [CrossRef][PubMed]
    [Google Scholar]
  5. Brady RA, Leid JG, Calhoun JH, Costerton JW, Shirtliff ME. Osteomyelitis and the role of biofilms in chronic infection. FEMS Immunol Med Microbiol 2008;52:13–22 [CrossRef][PubMed]
    [Google Scholar]
  6. Lewis K. Multidrug tolerance of biofilms and persister cells. Curr Top Microbiol Immunol 2008;322:107–131
    [Google Scholar]
  7. Jensen AG, Wachmann CH, Poulsen KB, Espersen F, Scheibel J et al. Risk factors for hospital-acquired Staphylococcus aureus bacteremia. Arch Intern Med 1999;159:1437–1444 [CrossRef][PubMed]
    [Google Scholar]
  8. Rice KC, Mann EE, Endres JL, Weiss EC, Cassat JE et al. The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus. Proc Natl Acad Sci USA 2007;104:8113–8118 [CrossRef][PubMed]
    [Google Scholar]
  9. Boles BR, Horswill AR. Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathog 2008;4:e1000052 [CrossRef][PubMed]
    [Google Scholar]
  10. Peng HL, Novick RP, Kreiswirth B, Kornblum J, Schlievert P. Cloning, characterization, and sequencing of an accessory gene regulator (agr) in Staphylococcus aureus. J Bacteriol 1988;170:4365–4372 [CrossRef][PubMed]
    [Google Scholar]
  11. Recsei P, Kreiswirth B, O'Reilly M, Schlievert P, Gruss A et al. Regulation of exoprotein gene expression in Staphylococcus aureus by agar. Mol Gen Genet 1986;202:58–61 [CrossRef][PubMed]
    [Google Scholar]
  12. Foulston L, Elsholz AK, Defrancesco AS, Losick R. The extracellular matrix of Staphylococcus aureus biofilms comprises cytoplasmic proteins that associate with the cell surface in response to decreasing pH. MBio 2014;5:e01667-14 [CrossRef][PubMed]
    [Google Scholar]
  13. Bischoff M, Entenza JM, Giachino P. Influence of a functional sigB operon on the global regulators sar and agr in Staphylococcus aureus. J Bacteriol 2001;183:5171–5179 [CrossRef][PubMed]
    [Google Scholar]
  14. Senn MM, Giachino P, Homerova D, Steinhuber A, Strassner J et al. Molecular analysis and organization of the sigmaB operon in Staphylococcus aureus. J Bacteriol 2005;187:8006–8019 [CrossRef][PubMed]
    [Google Scholar]
  15. Thoendel M, Kavanaugh JS, Flack CE, Horswill AR. Peptide signaling in the staphylococci. Chem Rev 2011;111:117–151 [CrossRef][PubMed]
    [Google Scholar]
  16. Kullik I, Giachino P, Fuchs T. Deletion of the alternative sigma factor sigmaB in Staphylococcus aureus reveals its function as a global regulator of virulence genes. J Bacteriol 1998;180:4814–4820
    [Google Scholar]
  17. Beenken KE, Mrak LN, Griffin LM, Zielinska AK, Shaw LN et al. Epistatic relationships between sarA and agr in Staphylococcus aureus biofilm formation. PLoS One 2010;5:e10790 [CrossRef][PubMed]
    [Google Scholar]
  18. Tsang LH, Cassat JE, Shaw LN, Beenken KE, Smeltzer MS. Factors contributing to the biofilm-deficient phenotype of Staphylococcus aureus sarA mutants. PLoS One 2008;3:e3361 [CrossRef][PubMed]
    [Google Scholar]
  19. Tormo MA, Martí M, Valle J, Manna AC, Cheung AL et al. SarA is an essential positive regulator of Staphylococcus epidermidis biofilm development. J Bacteriol 2005;187:2348–2356 [CrossRef][PubMed]
    [Google Scholar]
  20. Valle J, Toledo-Arana A, Berasain C, Ghigo JM, Amorena B et al. SarA and not σB is essential for biofilm development by Staphylococcus aureus. Mol Microbiol 2003;48:1075–1087 [CrossRef][PubMed]
    [Google Scholar]
  21. Mrak LN, Zielinska AK, Beenken KE, Mrak IN, Atwood DN et al. saeRS and sarA act synergistically to repress protease production and promote biofilm formation in Staphylococcus aureus. PLoS One 2012;7:e38453 [CrossRef][PubMed]
    [Google Scholar]
  22. Cue D, Junecko JM, Lei MG, Blevins JS, Smeltzer MS et al. SaeRS-dependent inhibition of biofilm formation in Staphylococcus aureus Newman. PLoS One 2015;10:e0123027 [CrossRef][PubMed]
    [Google Scholar]
  23. Mainiero M, Goerke C, Geiger T, Gonser C, Herbert S et al. Differential target gene activation by the Staphylococcus aureus two-component system saeRS. J Bacteriol 2010;192:613–623 [CrossRef][PubMed]
    [Google Scholar]
  24. O'Toole GA. Microtiter dish biofilm formation assay. J Vis Exp 2011;47:2437 [CrossRef][PubMed]
    [Google Scholar]
  25. Fischer J, Lee JC, Peters G, Kahl BC. Acapsular clinical Staphylococcus aureus isolates lack agr function. Clin Microbiol Infect 2014;20:O414–O417 [CrossRef][PubMed]
    [Google Scholar]
  26. Goerke C, Wolz C. Adaptation of Staphylococcus aureus to the cystic fibrosis lung. Int J Med Microbiol 2010;300:520–525 [CrossRef][PubMed]
    [Google Scholar]
  27. Grundmeier M, Tuchscherr L, Brück M, Viemann D, Roth J et al. Staphylococcal strains vary greatly in their ability to induce an inflammatory response in endothelial cells. J Infect Dis 2010;201:871–880 [CrossRef][PubMed]
    [Google Scholar]
  28. Hirschhausen N, Block D, Bianconi I, Bragonzi A, Birtel J et al. Extended Staphylococcus aureus persistence in cystic fibrosis is associated with bacterial adaptation. Int J Med Microbiol 2013;303:685–692 [CrossRef][PubMed]
    [Google Scholar]
  29. Savage VJ, Chopra I, O'Neill AJ. Population diversification in Staphylococcus aureus biofilms may promote dissemination and persistence. PLoS One 2013;8:e62513 [CrossRef][PubMed]
    [Google Scholar]
  30. Fowler VG, Sakoulas G, McIntyre LM, Meka VG, Arbeit RD et al. Persistent bacteremia due to methicillin-resistant Staphylococcus aureus infection is associated with agr dysfunction and low-level in vitro resistance to thrombin-induced platelet microbicidal protein. J Infect Dis 2004;190:1140–1149 [CrossRef][PubMed]
    [Google Scholar]
  31. Kahl BC, Becker K, Löffler B. Clinical significance and pathogenesis of staphylococcal small colony variants in persistent infections. Clin Microbiol Rev 2016;29:401–427 [CrossRef][PubMed]
    [Google Scholar]
  32. Tuchscherr L, Heitmann V, Hussain M, Viemann D, Roth J et al. Staphylococcus aureus small-colony variants are adapted phenotypes for intracellular persistence. J Infect Dis 2010;202:1031–1040 [CrossRef][PubMed]
    [Google Scholar]
  33. Ray VA, Morris AR, Visick KL. A semi-quantitative approach to assess biofilm formation using wrinkled colony development. J Vis Exp 2012;64:4035 [CrossRef][PubMed]
    [Google Scholar]
  34. Branda SS, González-Pastor JE, Ben-Yehuda S, Losick R, Kolter R. Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci USA 2001;98:11621–11626 [CrossRef][PubMed]
    [Google Scholar]
  35. Serra DO, Richter AM, Klauck G, Mika F, Hengge R. Microanatomy at cellular resolution and spatial order of physiological differentiation in a bacterial biofilm. MBio 2013;4:e00103-13 [CrossRef][PubMed]
    [Google Scholar]
  36. Yang L, Hu Y, Liu Y, Zhang J, Ulstrup J et al. Distinct roles of extracellular polymeric substances in Pseudomonas aeruginosa biofilm development. Environ Microbiol 2011;13:1705–1717 [CrossRef]
    [Google Scholar]
  37. García-Betancur JC, Goñi-Moreno A, Horger T, Schott M, Sharan M et al. Cell differentiation defines acute and chronic infection cell types inStaphylococcus aureus. Elife 2017;6:e28023 [CrossRef][PubMed]
    [Google Scholar]
  38. Koch G, Yepes A, Förstner KU, Wermser C, Stengel ST et al. Evolution of resistance to a last-resort antibiotic in Staphylococcus aureus via bacterial competition. Cell 2014;158:1060–1071 [CrossRef][PubMed]
    [Google Scholar]
  39. Swoboda JG, Campbell J, Meredith TC, Walker S. Wall teichoic acid function, biosynthesis, and inhibition. Chembiochem 2010;11:35–45 [CrossRef][PubMed]
    [Google Scholar]
  40. Heptinstall S, Archibald AR, Baddiley J. Teichoic acids and membrane function in bacteria. Nature 1970;225:519–521 [CrossRef][PubMed]
    [Google Scholar]
  41. Heckels JE, Lambert PA, Baddiley J. Binding of magnesium ions to cell walls of Bacillus subtilis W23 containing teichoic acid or teichuronic acid. Biochem J 1977;162:359–365 [CrossRef]
    [Google Scholar]
  42. Lambert PA, Hancock IC, Baddiley J. Influence of alanyl ester residues on the binding of magnesium ions to teichoic acids. Biochem J 1975;151:671–676 [CrossRef][PubMed]
    [Google Scholar]
  43. George EA, Muir TW. Molecular mechanisms of agr quorum sensing in virulent staphylococci. Chembiochem 2007;8:847–855 [CrossRef][PubMed]
    [Google Scholar]
  44. Boisset S, Geissmann T, Huntzinger E, Fechter P, Bendridi N et al. Staphylococcus aureus RNAIII coordinately represses the synthesis of virulence factors and the transcription regulator Rot by an antisense mechanism. Genes Dev 2007;21:1353–1366 [CrossRef]
    [Google Scholar]
  45. Duthie ES, Lorenz LL. Staphylococcal coagulase; mode of action and antigenicity. J Gen Microbiol 1952;6:95–107 [CrossRef][PubMed]
    [Google Scholar]
  46. Gunther T. Magnesium in bone and the magnesium load test. Magnes Res 2011;24:223–224
    [Google Scholar]
  47. Jahnen-Dechent W, Ketteler M. Magnesium basics. Clin Kidney J 2012;5:i3–i14 [CrossRef][PubMed]
    [Google Scholar]
  48. Darwin C. The Origin of the Species London: John Murray; 1859
    [Google Scholar]
  49. Moxon ER, Rainey PB, Nowak MA, Lenski RE. Adaptive evolution of highly mutable loci in pathogenic bacteria. Curr Biol 1994;4:24–33 [CrossRef][PubMed]
    [Google Scholar]
  50. Boles BR, Thoendel M, Roth AJ, Horswill AR. Identification of genes involved in polysaccharide-independent Staphylococcus aureus biofilm formation. PLoS One 2010;5:e10146 [CrossRef][PubMed]
    [Google Scholar]
  51. Tu Quoc PH, Genevaux P, Pajunen M, Savilahti H, Georgopoulos C et al. Isolation and characterization of biofilm formation-defective mutants of Staphylococcus aureus. Infect Immun 2007;75:1079–1088 [CrossRef][PubMed]
    [Google Scholar]
  52. Beenken KE, Blevins JS, Smeltzer MS. Mutation of sarA in Staphylococcus aureus limits biofilm formation. Infect Immun 2003;71:4206–4211 [CrossRef][PubMed]
    [Google Scholar]
  53. Lauderdale KJ, Boles BR, Cheung AL, Horswill AR. Interconnections between Sigma B, agr, and proteolytic activity in Staphylococcus aureus biofilm maturation. Infect Immun 2009;77:1623–1635 [CrossRef][PubMed]
    [Google Scholar]
  54. Heilmann C. Adhesion mechanisms of staphylococci. Adv Exp Med Biol 2011;715:105–123[Crossref]
    [Google Scholar]
  55. Merino N, Toledo-Arana A, Vergara-Irigaray M, Valle J, Solano C et al. Protein A-mediated multicellular behavior in Staphylococcus aureus. J Bacteriol 2009;191:832–843 [CrossRef][PubMed]
    [Google Scholar]
  56. Cramton SE, Gerke C, Schnell NF, Nichols WW, Gotz F. The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun 1999;67:5427–5433
    [Google Scholar]
  57. Clarke SR, Foster SJ. Surface adhesins of Staphylococcus aureus. Adv Microb Physiol 2006;51:187–224[Crossref]
    [Google Scholar]
  58. Fey PD, Endres JL, Yajjala VK, Widhelm TJ, Boissy RJ et al. A genetic resource for rapid and comprehensive phenotype screening of nonessential Staphylococcus aureus genes. MBio 2013;4:e00537-12 [CrossRef][PubMed]
    [Google Scholar]
  59. Wang Z, Danziger SA, Heavner BD, Ma S, Smith JJ et al. Combining inferred regulatory and reconstructed metabolic networks enhances phenotype prediction in yeast. PLoS Comput Biol 2017;13:e1005489 [CrossRef][PubMed]
    [Google Scholar]
  60. Gonzalez BE, Martinez-Aguilar G, Hulten KG, Hammerman WA, Coss-Bu J et al. Severe Staphylococcal sepsis in adolescents in the era of community-acquired methicillin-resistant Staphylococcus aureus. Pediatrics 2005;115:642–648 [CrossRef][PubMed]
    [Google Scholar]
  61. Yee R, Cui P, Shi W, Feng J, Zhang Y. Genetic screen reveals the role of purine metabolism in Staphylococcus aureus persistence to rifampicin. Antibiotics 2011;4:627–642 [CrossRef]
    [Google Scholar]
  62. Lan L, Cheng A, Dunman PM, Missiakas D, He C. Golden pigment production and virulence gene expression are affected by metabolisms in Staphylococcus aureus. J Bacteriol 2010;192:3068–3077 [CrossRef][PubMed]
    [Google Scholar]
  63. Mueller EJ, Meyer E, Rudolph J, Davisson VJ, Stubbe J. N5-carboxyaminoimidazole ribonucleotide: evidence for a new intermediate and two new enzymatic activities in the de novo purine biosynthetic pathway of Escherichia coli. Biochemistry 1994;33:2269–2278 [CrossRef][PubMed]
    [Google Scholar]
  64. Hartman SC, Buchanan JM. The Biosynthesis of the Purines. In Krayer O, Lehnartz E, Muralt A, Weber HH. (editors) Ergebnisse Der Physiologie Biologischen Chemie Und experimentellen Pharmakologie: Fuenfzigster Band Berlin, Heidelberg: Springer; 1959; pp.75–121
    [Google Scholar]
  65. Throup JP, Zappacosta F, Lunsford RD, Annan RS, Carr SA et al. The srhSR gene pair from Staphylococcus aureus: genomic and proteomic approaches to the identification and characterization of gene function. Biochemistry 2001;40:10392–10401 [CrossRef][PubMed]
    [Google Scholar]
  66. Yarwood JM, McCormick JK, Schlievert PM. Identification of a novel two-component regulatory system that acts in global regulation of virulence factors of Staphylococcus aureus. J Bacteriol 2001;183:1113–1123 [CrossRef][PubMed]
    [Google Scholar]
  67. Mashruwala AA, Guchte AV, Boyd JM. Impaired respiration elicits SrrAB-dependent programmed cell lysis and biofilm formation in Staphylococcus aureus. Elife 2017;6:e23845 [CrossRef][PubMed]
    [Google Scholar]
  68. Wilde AD, Snyder DJ, Putnam NE, Valentino MD, Hammer ND et al. Bacterial hypoxic responses revealed as critical determinants of the host-pathogen outcome by TnSeq analysis of Staphylococcus aureus invasive infection. PLoS Pathog 2015;11:e1005341 [CrossRef][PubMed]
    [Google Scholar]
  69. Pragman AA, Ji Y, Schlievert PM. Repression of Staphylococcus aureus SrrAB using inducible antisense srrA alters growth and virulence factor transcript levels. Biochemistry 2007;46:314–321 [CrossRef][PubMed]
    [Google Scholar]
  70. Pragman AA, Yarwood JM, Tripp TJ, Schlievert PM. Characterization of virulence factor regulation by SrrAB, a two-component system in Staphylococcus aureus. J Bacteriol 2004;186:2430–2438 [CrossRef][PubMed]
    [Google Scholar]
  71. Ulrich M, Bastian M, Cramton SE, Ziegler K, Pragman AA et al. The staphylococcal respiratory response regulator SrrAB induces ica gene transcription and polysaccharide intercellular adhesin expression, protecting Staphylococcus aureus from neutrophil killing under anaerobic growth conditions. Mol Microbiol 2007;65:1276–1287 [CrossRef]
    [Google Scholar]
  72. Mashruwala AA, Gries CM, Scherr TD, Kielian T, Boyd JM. SaeRS is responsive to cellular respiratory status and regulates fermentative biofilm formation in Staphylococcus aureus. Infect Immun 2017;85:e00157-17 [CrossRef][PubMed]
    [Google Scholar]
  73. Pelz A, Wieland KP, Putzbach K, Hentschel P, Albert K et al. Structure and biosynthesis of staphyloxanthin from Staphylococcus aureus. J Biol Chem 2005;280:32493–32498 [CrossRef][PubMed]
    [Google Scholar]
  74. Yarwood JM, Schlievert PM. Quorum sensing in Staphylococcus infections. J Clin Invest 2003;112:1620–1625 [CrossRef][PubMed]
    [Google Scholar]
  75. Haque RU, Baldwin JN. Types of hemolysins produced by Staphylococcus aureus, as determined by the replica plating technique. J Bacteriol 1964;88:1442–1447
    [Google Scholar]
  76. Regassa LB, Novick RP, Betley MJ. Glucose and nonmaintained pH decrease expression of the accessory gene regulator (agr) in Staphylococcus aureus. Infect Immun 1992;60:3381–3388
    [Google Scholar]
  77. Burnside K, Lembo A, de Los Reyes M, Iliuk A, Binhtran NT et al. Regulation of hemolysin expression and virulence of Staphylococcus aureus by a serine/threonine kinase and phosphatase. PLoS One 2010;5:e11071 [CrossRef][PubMed]
    [Google Scholar]
  78. Cori CF, Cori GT. Glycogen formation in the ilver from d- and l-lactic acid. Journal of Biological Chemistry 1929;81:389–403
    [Google Scholar]
  79. Anderson RL, Wood WA. Carbohydrate metabolism in microorganisms. Annu Rev Microbiol 1969;23:539–578 [CrossRef][PubMed]
    [Google Scholar]
  80. Scovill WH, Schreier HJ, Bayles KW. Identification and characterization of the pckA gene from Staphylococcus aureus. J Bacteriol 1996;178:3362–3364 [CrossRef]
    [Google Scholar]
  81. Chiba A, Sugimoto S, Sato F, Hori S, Mizunoe Y. A refined technique for extraction of extracellular matrices from bacterial biofilms and its applicability. Microb Biotechnol 2015;8:392–403 [CrossRef][PubMed]
    [Google Scholar]
  82. Ledala N, Zhang B, Seravalli J, Powers R, Somerville GA. Influence of iron and aeration on Staphylococcus aureus growth, metabolism, and transcription. J Bacteriol 2014;196:2178–2189 [CrossRef][PubMed]
    [Google Scholar]
  83. Jander G, Rahme LG, Ausubel FM. Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. J Bacteriol 2000;182:3843–3845 [CrossRef][PubMed]
    [Google Scholar]
  84. Koch G, Nadal-Jimenez P, Cool RH, Quax WJ. Assessing Pseudomonas virulence with nonmammalian host: Galleria mellonella. Methods Mol Biol 2014;1149:681–688 [CrossRef][PubMed]
    [Google Scholar]
  85. Desbois AP, Coote PJ. Wax moth larva (Galleria mellonella): an in vivo model for assessing the efficacy of antistaphylococcal agents. J Antimicrob Chemother 2011;66:1785–1790 [CrossRef][PubMed]
    [Google Scholar]
  86. Ramarao N, Nielsen-Leroux C, Lereclus D. The insect Galleria mellonella as a powerful infection model to investigate bacterial pathogenesis. J Vis Exp 2011;70:e4392
    [Google Scholar]
  87. Silva LN, da Hora GCA, Soares TA, Bojer MS, Ingmer H et al. Myricetin protects Galleria mellonella against Staphylococcus aureus infection and inhibits multiple virulence factors. Sci Rep 2017;7:2823 [CrossRef]
    [Google Scholar]
  88. Mullett H, Ratcliffe NA, Rowley AF. Analysis of immune defences of the wax moth, Galleria mellonella, with anti-haemocytic monoclonal antibodies. J Insect Physiol 1993;39:897–902 [CrossRef]
    [Google Scholar]
  89. Hoffmann JA. Innate immunity of insects. Curr Opin Immunol 1995;7:4–10 [CrossRef]
    [Google Scholar]
  90. Pragman AA, Herron-Olson L, Case LC, Vetter SM, Henke EE et al. Sequence analysis of the Staphylococcus aureus srrAB loci reveals that truncation of srrA affects growth and virulence factor expression. J Bacteriol 2007;189:7515–7519 [CrossRef][PubMed]
    [Google Scholar]
  91. Periasamy S, Joo HS, Duong AC, Bach TH, Tan VY et al. How Staphylococcus aureus biofilms develop their characteristic structure. Proc Natl Acad Sci USA 2012;109:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  92. Li Z, Chen Y, Liu D, Zhao N, Cheng H et al. Involvement of glycolysis/gluconeogenesis and signaling regulatory pathways in Saccharomyces cerevisiae biofilms during fermentation. Front Microbiol 2015;6:139 [CrossRef]
    [Google Scholar]
  93. Ibberson CB, Stacy A, Fleming D, Dees JL, Rumbaugh K et al. Co-infecting microorganisms dramatically alter pathogen gene essentiality during polymicrobial infection. Nat Microbiol 2017;2:17079 [CrossRef][PubMed]
    [Google Scholar]
  94. Akiyama H, Kanzaki H, Tada J, Arata J. Staphylococcus aureus infection on cut wounds in the mouse skin: experimental staphylococcal botryomycosis. J Dermatol Sci 1996;11:234–238 [CrossRef]
    [Google Scholar]
  95. Yoshioka S, Newell PD. Disruption of de novo purine biosynthesis in Pseudomonas fluorescens Pf0-1 leads to reduced biofilm formation and a reduction in cell size of surface-attached but not planktonic cells. PeerJ 2016;4:e1543 [CrossRef][PubMed]
    [Google Scholar]
  96. Kim JK, Kwon JY, Kim SK, Han SH, Won YJ et al. Purine biosynthesis, biofilm formation, and persistence of an insect-microbe gut symbiosis. Appl Environ Microbiol 2014;80:4374–4382 [CrossRef][PubMed]
    [Google Scholar]
  97. Kinkel TL, Roux CM, Dunman PM, Fang FC. The Staphylococcus aureus SrrAB two-component system promotes resistance to nitrosative stress and hypoxia. MBio 2013;4:e00696-13 [CrossRef][PubMed]
    [Google Scholar]
  98. Sabirova JS, Hernalsteens JP, De Backer S, Xavier BB, Moons P et al. Fatty acid kinase A is an important determinant of biofilm formation in Staphylococcus aureus USA300. BMC Genomics 2015;16:861 [CrossRef][PubMed]
    [Google Scholar]
  99. Kreiswirth BN, Löfdahl S, Betley MJ, O'Reilly M, Schlievert PM et al. The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature 1983;305:709–712 [CrossRef][PubMed]
    [Google Scholar]
  100. Reusch RN, Hiske TW, Sadoff HL. Poly-beta-hydroxybutyrate membrane structure and its relationship to genetic transformability in Escherichia coli. J Bacteriol 1986;168:553–562 [CrossRef]
    [Google Scholar]
  101. Arnaud M, Chastanet A, Débarbouillé M. New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, gram-positive bacteria. Appl Environ Microbiol 2004;70:6887–6891 [CrossRef][PubMed]
    [Google Scholar]
  102. Yepes A, Koch G, Waldvogel A, Garcia-Betancur JC, Lopez D. Reconstruction of mreB expression in Staphylococcus aureus via a collection of new integrative plasmids. Appl Environ Microbiol 2014;80:3868–3878 [CrossRef][PubMed]
    [Google Scholar]
  103. Wach A. PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae. Yeast 1996;12:259–265 [CrossRef][PubMed]
    [Google Scholar]
  104. O'Toole GA, Kolter R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 1998;28:449–461 [CrossRef][PubMed]
    [Google Scholar]
  105. Masuko T, Minami A, Iwasaki N, Majima T, Nishimura S et al. Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Anal Biochem 2005;339:69–72 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000660
Loading
/content/journal/micro/10.1099/mic.0.000660
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error