1887

Abstract

The type VII protein secretion system (T7SS) is found in actinobacteria and firmicutes, and plays important roles in virulence and interbacterial competition. A membrane-bound ATPase protein, EssC in Staphylococcus aureus, lies at the heart of the secretion machinery. The EssC protein from S. aureus strains can be grouped into four variants (EssC1–EssC4) that display sequence variability in the C-terminal region. Here we show that the EssC2, EssC3 and EssC4 variants can be produced in a strain deleted for essC1, and that they are able to mediate secretion of EsxA, an essential component of the secretion apparatus. They are, however, unable to support secretion of the substrate protein EsxC, which is only encoded in essC1-specific strains. This finding indicates that EssC is a specificity determinant for T7 protein secretion. Our results support a model in which the C-terminal domain of EssC interacts with substrate proteins, whereas EsxA interacts elsewhere.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000650
2018-04-05
2019-08-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/164/5/816.html?itemId=/content/journal/micro/10.1099/mic.0.000650&mimeType=html&fmt=ahah

References

  1. Gröschel MI, Sayes F, Simeone R, Majlessi L, Brosch R. ESX secretion systems: mycobacterial evolution to counter host immunity. Nat Rev Microbiol 2016; 14: 677– 691 [CrossRef] [PubMed]
    [Google Scholar]
  2. Ates LS, Houben EN, Bitter W. Type VII Secretion: a highly versatile secretion system. Microbiol Spectr 2016; 4: [CrossRef] [PubMed]
    [Google Scholar]
  3. Renshaw PS, Lightbody KL, Veverka V, Muskett FW, Kelly G et al. Structure and function of the complex formed by the tuberculosis virulence factors CFP-10 and ESAT-6. EMBO J 2005; 24: 2491– 2498 [CrossRef] [PubMed]
    [Google Scholar]
  4. Sundaramoorthy R, Fyfe PK, Hunter WN. Structure of Staphylococcus aureus EsxA suggests a contribution to virulence by action as a transport chaperone and/or adaptor protein. J Mol Biol 2008; 383: 603– 614 [CrossRef] [PubMed]
    [Google Scholar]
  5. Champion PA, Stanley SA, Champion MM, Brown EJ, Cox JS. C-terminal signal sequence promotes virulence factor secretion in Mycobacterium tuberculosis. Science 2006; 313: 1632– 1636 [CrossRef] [PubMed]
    [Google Scholar]
  6. Daleke MH, Ummels R, Bawono P, Heringa J, Vandenbroucke-Grauls CM et al. General secretion signal for the mycobacterial type VII secretion pathway. Proc Natl Acad Sci USA 2012; 109: 11342– 11347 [CrossRef] [PubMed]
    [Google Scholar]
  7. Poulsen C, Panjikar S, Holton SJ, Wilmanns M, Song YH. WXG100 protein superfamily consists of three subfamilies and exhibits an α-helical C-terminal conserved residue pattern. PLoS One 2014; 9: e89313 [CrossRef] [PubMed]
    [Google Scholar]
  8. Rosenberg OS, Dovala D, Li X, Connolly L, Bendebury A et al. Substrates control multimerization and activation of the multi-domain ATPase motor of type VII secretion. Cell 2015; 161: 501– 512 [CrossRef] [PubMed]
    [Google Scholar]
  9. Sysoeva TA, Zepeda-Rivera MA, Huppert LA, Burton BM. Dimer recognition and secretion by the ESX secretion system in Bacillus subtilis. Proc Natl Acad Sci USA 2014; 111: 7653– 7658 [CrossRef] [PubMed]
    [Google Scholar]
  10. Solomonson M, Setiaputra D, Makepeace KA, Lameignere E, Petrotchenko EV et al. Structure of EspB from the ESX-1 type VII secretion system and insights into its export mechanism. Structure 2015; 23: 571– 583 [CrossRef] [PubMed]
    [Google Scholar]
  11. Ekiert DC, Cox JS. Structure of a PE-PPE-EspG complex from Mycobacterium tuberculosis reveals molecular specificity of ESX protein secretion. Proc Natl Acad Sci USA 2014; 111: 14758– 14763 [CrossRef] [PubMed]
    [Google Scholar]
  12. Korotkova N, Freire D, Phan TH, Ummels R, Creekmore CC et al. Structure of the Mycobacterium tuberculosis type VII secretion system chaperone EspG5 in complex with PE25-PPE41 dimer. Mol Microbiol 2014; 94: 367– 382 [CrossRef] [PubMed]
    [Google Scholar]
  13. Daleke MH, van der Woude AD, Parret AH, Ummels R, de Groot AM et al. Specific chaperones for the type VII protein secretion pathway. J Biol Chem 2012; 287: 31939– 31947 [CrossRef] [PubMed]
    [Google Scholar]
  14. Cao Z, Casabona MG, Kneuper H, Chalmers JD, Palmer T. The type VII secretion system of Staphylococcus aureus secretes a nuclease toxin that targets competitor bacteria. Nat Microbiol 2016; 2: 16183 [CrossRef] [PubMed]
    [Google Scholar]
  15. Whitney JC, Peterson SB, Kim J, Pazos M, Verster AJ et al. A broadly distributed toxin family mediates contact-dependent antagonism between gram-positive bacteria. Elife 2017; 6: [CrossRef] [PubMed]
    [Google Scholar]
  16. Unnikrishnan M, Constantinidou C, Palmer T, Pallen MJ. The enigmatic Esx proteins: looking beyond mycobacteria. Trends Microbiol 2017; 25: 192– 204 [CrossRef] [PubMed]
    [Google Scholar]
  17. Ramsdell TL, Huppert LA, Sysoeva TA, Fortune SM, Burton BM. Linked domain architectures allow for specialization of function in the FtsK/SpoIIIE ATPases of ESX secretion systems. J Mol Biol 2015; 427: 1119– 1132 [CrossRef] [PubMed]
    [Google Scholar]
  18. Beckham KS, Ciccarelli L, Bunduc CM, Mertens HD, Ummels R et al. Structure of the mycobacterial ESX-5 type VII secretion system membrane complex by single-particle analysis. Nat Microbiol 2017; 2: 17047 [CrossRef] [PubMed]
    [Google Scholar]
  19. Burts ML, Williams WA, Debord K, Missiakas DM. EsxA and EsxB are secreted by an ESAT-6-like system that is required for the pathogenesis of Staphylococcus aureus infections. Proc Natl Acad Sci USA 2005; 102: 1169– 1174 [CrossRef] [PubMed]
    [Google Scholar]
  20. Kneuper H, Cao ZP, Twomey KB, Zoltner M, Jäger F et al. Heterogeneity in ess transcriptional organization and variable contribution of the Ess/Type VII protein secretion system to virulence across closely related Staphylocccus aureus strains. Mol Microbiol 2014; 93: 928– 943 [CrossRef] [PubMed]
    [Google Scholar]
  21. Mielich-Süss B, Wagner RM, Mietrach N, Hertlein T, Marincola G et al. Flotillin scaffold activity contributes to type VII secretion system assembly in Staphylococcus aureus. PLoS Pathog 2017; 13: e1006728 [CrossRef] [PubMed]
    [Google Scholar]
  22. Baptista C, Barreto HC, São-José C. High levels of DegU-P activate an Esat-6-like secretion system in Bacillus subtilis. PLoS One 2013; 8: e67840 [CrossRef] [PubMed]
    [Google Scholar]
  23. Huppert LA, Ramsdell TL, Chase MR, Sarracino DA, Fortune SM et al. The ESX system in Bacillus subtilis mediates protein secretion. PLoS One 2014; 9: e96267 [CrossRef] [PubMed]
    [Google Scholar]
  24. Casabona MG, Buchanan G, Zoltner M, Harkins CP, Holden MTG et al. Functional analysis of the EsaB component of the Staphylococcus aureus Type VII secretion system. Microbiology 2017; 163: 1839– 1850 [Crossref]
    [Google Scholar]
  25. Stanley SA, Raghavan S, Hwang WW, Cox JS. Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system. Proc Natl Acad Sci USA 2003; 100: 13001– 13006 [CrossRef] [PubMed]
    [Google Scholar]
  26. Anderson M, Ohr RJ, Aly KA, Nocadello S, Kim HK et al. EssE promotes Staphylococcus aureus ESS-dependent protein secretion to modify host immune responses during infection. J Bacteriol 2017; 199: e00527-16 [CrossRef] [PubMed]
    [Google Scholar]
  27. Warne B, Harkins CP, Harris SR, Vatsiou A, Stanley-Wall N et al. The Ess/Type VII secretion system of Staphylococcus aureus shows unexpected genetic diversity. BMC Genomics 2016; 17: 222 [CrossRef] [PubMed]
    [Google Scholar]
  28. Burts ML, Dedent AC, Missiakas DM. EsaC substrate for the ESAT-6 secretion pathway and its role in persistent infections of Staphylococcus aureus. Mol Microbiol 2008; 69: 736– 746 [CrossRef] [PubMed]
    [Google Scholar]
  29. Tanaka Y, Kuroda M, Yasutake Y, Yao M, Tsumoto K et al. Crystal structure analysis reveals a novel forkhead-associated domain of ESAT-6 secretion system C protein in Staphylococcus aureus. Proteins 2007; 69: 659– 664 [CrossRef] [PubMed]
    [Google Scholar]
  30. Zoltner M, Ng WM, Money JJ, Fyfe PK, Kneuper H et al. EssC: domain structures inform on the elusive translocation channel in the Type VII secretion system. Biochem J 2016; 473: 1941– 1952 [CrossRef] [PubMed]
    [Google Scholar]
  31. Jäger F, Zoltner M, Kneuper H, Hunter WN, Palmer T. Membrane interactions and self-association of components of the Ess/Type VII secretion system of Staphylococcus aureus. FEBS Lett 2016; 590: 349– 357 [CrossRef] [PubMed]
    [Google Scholar]
  32. Helle L, Kull M, Mayer S, Marincola G, Zelder ME et al. Vectors for improved Tet repressor-dependent gradual gene induction or silencing in Staphylococcus aureus. Microbiology 2011; 157: 3314– 3323 [CrossRef] [PubMed]
    [Google Scholar]
  33. Phan TH, Ummels R, Bitter W, Houben EN. Identification of a substrate domain that determines system specificity in mycobacterial type VII secretion systems. Sci Rep 2017; 7: 42704 [CrossRef] [PubMed]
    [Google Scholar]
  34. Casabona MG, Kneuper H, Alferes de Lima D, Harkins CP, Zoltner M et al. Haem-iron plays a key role in the regulation of the Ess/type VII secretion system of Staphylococcus aureus RN6390. Microbiology 2017; 163: 1839– 1850 [CrossRef] [PubMed]
    [Google Scholar]
  35. Miller M, Donat S, Rakette S, Stehle T, Kouwen TR et al. Staphylococcal PknB as the first prokaryotic representative of the proline-directed kinases. PLoS One 2010; 5: e9057 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000650
Loading
/content/journal/micro/10.1099/mic.0.000650
Loading

Data & Media loading...

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error