1887

Abstract

cells have bipolar flagella. Both flagella have similar lengths of about one helical turn, or 3.53±0.52 µm. The flagellar filament is composed of two homologous flagellins: FlaA and FlaB. Mutant strains that express either FlaA or FlaB alone produce filaments that are shorter than those of the wild-type. It is reported that the gene could affect filament length in some species of bacteria, but its function remains unknown. We introduced a -deletion mutation into the wild-type strain and - or -deletion mutant strains, and observed their flagella by microscopy. The Δ mutant cells produced long filaments of two helical turns in the wild-type background. The Δ double mutant cells produced very short FlaB filaments. On the other hand, Δ double mutant cells produced long FlaA filaments and their morphology was not helical but straight. Furthermore, FlaG was secreted, and a pulldown assay showed that sigma factor 28 was co-precipitated with purified polyhistidine-tagged FlaG. We conclude that FlaG controls flagella length by negatively regulating FlaA filament assembly and discuss the role of FlaA and FlaB flagellins in flagella formation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000648
2018-05-01
2019-12-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/164/5/740.html?itemId=/content/journal/micro/10.1099/mic.0.000648&mimeType=html&fmt=ahah

References

  1. Wösten MM, van Dijk L, Veenendaal AK, de Zoete MR, Bleumink-Pluijm NM et al. Temperature-dependent FlgM/FliA complex formation regulates Campylobacter jejuni flagella length. Mol Microbiol 2010;75:1577–1591 [CrossRef][PubMed]
    [Google Scholar]
  2. Guerry P, Alm RA, Power ME, Logan SM, Trust TJ. Role of two flagellin genes in Campylobacter motility. J Bacteriol 1991;173:4757–4764 [CrossRef][PubMed]
    [Google Scholar]
  3. Aldridge PD, Karlinsey JE, Aldridge C, Birchall C, Thompson D et al. The flagellar-specific transcription factor, σ28, is the Type III secretion chaperone for the flagellar-specific anti-σ28 factor FlgM. Genes Dev 2006;20:2315–2326 [CrossRef][PubMed]
    [Google Scholar]
  4. Kalmokoff M, Lanthier P, Tremblay TL, Foss M, Lau PC et al. Proteomic analysis of Campylobacter jejuni 11168 biofilms reveals a role for the motility complex in biofilm formation. J Bacteriol 2006;188:4312–4320 [CrossRef][PubMed]
    [Google Scholar]
  5. Aizawa S-I. The Flagellar World: Electron Microscopic Images of Bacterial Flagella and Related Surface Structures from More than 30 Species Oxford, UK; Waltham, MA: Academic Press; 2014
    [Google Scholar]
  6. Capdevila S, Martínez-Granero FM, Sánchez-Contreras M, Rivilla R, Martín M. Analysis of Pseudomonas fluorescens F113 genes implicated in flagellar filament synthesis and their role in competitive root colonization. Microbiology 2004;150:3889–3897 [CrossRef][PubMed]
    [Google Scholar]
  7. Rabaan AA, Gryllos I, Tomás JM, Shaw JG. Motility and the polar flagellum are required for Aeromonas caviae adherence to HEp-2 cells. Infect Immun 2001;69:4257–4267 [CrossRef][PubMed]
    [Google Scholar]
  8. McGee K, Hörstedt P, Milton DL. Identification and characterization of additional flagellin genes from Vibrio anguillarum. J Bacteriol 1996;178:5188–5198 [CrossRef][PubMed]
    [Google Scholar]
  9. Redondo-Nieto M, Lloret J, Larenas J, Barahona E, Navazo A et al. Transcriptional organization of the region encoding the synthesis of the flagellar filament in Pseudomonas fluorescens. J Bacteriol 2008;190:4106–4109 [CrossRef][PubMed]
    [Google Scholar]
  10. Davis L, Dirita V. Growth and laboratory maintenance of Campylobacter jejuni. Curr Protoc Microbiol 2008;Chapter 8:Unit 8A.1.1-8A.1.7 [CrossRef][PubMed]
    [Google Scholar]
  11. Sambrook J, Russell DW, Sambrook J. The Condensed Protocols from Molecular Cloning: A Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2006
    [Google Scholar]
  12. Davis L, Young K, Dirita V. Genetic manipulation of Campylobacter jejuni. Curr Protoc Microbiol 2008;Chapter 8:Unit 8A.2.1-8A.2.17 [CrossRef][PubMed]
    [Google Scholar]
  13. Hendrixson DR, Dirita VJ. Transcription of σ54-dependent but not σ28-dependent flagellar genes in Campylobacter jejuni is associated with formation of the flagellar secretory apparatus. Mol Microbiol 2003;50:687–702 [CrossRef][PubMed]
    [Google Scholar]
  14. Konishi M, Kanbe M, McMurry JL, Aizawa S. Flagellar formation in C-ring-defective mutants by overproduction of FliI, the ATPase specific for flagellar type III secretion. J Bacteriol 2009;191:6186–6191 [CrossRef][PubMed]
    [Google Scholar]
  15. Ludtke SJ, Baldwin PR, Chiu W. EMAN: semiautomated software for high-resolution single-particle reconstructions. J Struct Biol 1999;128:82–97 [CrossRef][PubMed]
    [Google Scholar]
  16. Ewing CP, Andreishcheva E, Guerry P. Functional characterization of flagellin glycosylation in Campylobacter jejuni 81-176. J Bacteriol 2009;191:7086–7093 [CrossRef][PubMed]
    [Google Scholar]
  17. Barrero-Tobon AM, Hendrixson DR. Flagellar biosynthesis exerts temporal regulation of secretion of specific Campylobacter jejuni colonization and virulence determinants. Mol Microbiol 2014;93:957–974 [CrossRef][PubMed]
    [Google Scholar]
  18. O'Brien EJ, Bennett PM. Structure of straight flagella from a mutant Salmonella. J Mol Biol 1972;70:133–152 [CrossRef][PubMed]
    [Google Scholar]
  19. Hughes KT. Flagellar hook length is controlled by a secreted molecular ruler. J Bacteriol 2012;194:4793–4796 [CrossRef][PubMed]
    [Google Scholar]
  20. Aizawa S. Mystery of FliK in length control of the flagellar hook. J Bacteriol 2012;194:4798–4800 [CrossRef][PubMed]
    [Google Scholar]
  21. Kodera N, Uchida K, Ando T, Aizawa S. Two-ball structure of the flagellar hook-length control protein FliK as revealed by high-speed atomic force microscopy. J Mol Biol 2015;427:406–414 [CrossRef][PubMed]
    [Google Scholar]
  22. Neal-McKinney JM, Konkel ME. The Campylobacter jejuni CiaC virulence protein is secreted from the flagellum and delivered to the cytosol of host cells. Front Cell Infect Microbiol 2012;2:31 [CrossRef][PubMed]
    [Google Scholar]
  23. Galeva A, Moroz N, Yoon YH, Hughes KT, Samatey FA et al. Bacterial flagellin-specific chaperone FliS interacts with anti-sigma factor FlgM. J Bacteriol 2014;196:1215–1221 [CrossRef][PubMed]
    [Google Scholar]
  24. Radomska KA, Ordoñez SR, Wösten MM, Wagenaar JA, van Putten JP. Feedback control of Campylobacter jejuni flagellin levels through reciprocal binding of FliW to flagellin and the global regulator CsrA. Mol Microbiol 2016;102:207–220 [CrossRef][PubMed]
    [Google Scholar]
  25. Radomska KA, Wösten M, Ordoñez SR, Wagenaar JA, van Putten JPM. Importance of Campylobacter jejuni FliS and FliW in flagella biogenesis and flagellin secretion. Front Microbiol 2017;8:1060 [CrossRef][PubMed]
    [Google Scholar]
  26. Lertsethtakarn P, Ottemann KM, Hendrixson DR. Motility and chemotaxis in Campylobacter and Helicobacter. Annu Rev Microbiol 2011;65:389–410 [CrossRef][PubMed]
    [Google Scholar]
  27. Konkel ME, Klena JD, Rivera-Amill V, Monteville MR, Biswas D et al. Secretion of virulence proteins from Campylobacter jejuni is dependent on a functional flagellar export apparatus. J Bacteriol 2004;186:3296–3303 [CrossRef][PubMed]
    [Google Scholar]
  28. Shigematsu M, Umeda A, Fujimoto S, Amako K. Spirochaete-like swimming mode of Campylobacter jejuni in a viscous environment. J Med Microbiol 1998;47:521–526 [CrossRef][PubMed]
    [Google Scholar]
  29. Walker D, Kübler M, Morozov KI, Fischer P, Leshansky AM. Optimal length of low reynolds number nanopropellers. Nano Lett 2015;15:4412–4416 [CrossRef][PubMed]
    [Google Scholar]
  30. Beeby M, Ribardo DA, Brennan CA, Ruby EG, Jensen GJ et al. Diverse high-torque bacterial flagellar motors assemble wider stator rings using a conserved protein scaffold. Proc Natl Acad Sci USA 2016;113:E1917E1926 [CrossRef][PubMed]
    [Google Scholar]
  31. Pearson BM, Gaskin DJ, Segers RP, Wells JM, Nuijten PJ et al. The complete genome sequence of Campylobacter jejuni strain 81116 (NCTC11828). J Bacteriol 2007;189:8402–8403 [CrossRef][PubMed]
    [Google Scholar]
  32. van Vliet AH, Wooldridge KG, Ketley JM. Iron-responsive gene regulation in a Campylobacter jejuni fur mutant. J Bacteriol 1998;180:5291–5298[PubMed]
    [Google Scholar]
  33. Karlyshev AV, Wren BW. Development and application of an insertional system for gene delivery and expression in Campylobacter jejuni. Appl Environ Microbiol 2005;71:4004–4013 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000648
Loading
/content/journal/micro/10.1099/mic.0.000648
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error