1887

Abstract

causes acute and chronic human infections and is the major cause of morbidity and mortality in cystic fibrosis (CF) patients. We previously determined that the glycerol-3-phosphate dehydrogenase encoded by plays a larger role in physiology beyond its role in glycerol metabolism. To better understand the effect of a mutation on physiology we compared the transcriptomes of strain PAO1 and the PAO1Δ mutant using RNA-seq analysis. We determined that a null mutation of significantly altered amino acid metabolism in and affected the production of intermediates that are channelled into the tricarboxylic acid cycle. Moreover, the loss of induced a general stress response mediated by RpoS in Several other phenotypes observed for the mutant include increased persister cell formation, reduced extracellular ATP accumulation and increased heat output. Taken together, these findings implicate glycerol-3-phosphate dehydrogenase as a key player in energy metabolism in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000646
2018-04-01
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/164/4/551.html?itemId=/content/journal/micro/10.1099/mic.0.000646&mimeType=html&fmt=ahah

References

  1. Turner KH, Everett J, Trivedi U, Rumbaugh KP, Whiteley M. Requirements for Pseudomonas aeruginosa acute burn and chronic surgical wound infection. PLoS Genet 2014; 10:e1004518 [View Article][PubMed]
    [Google Scholar]
  2. Berger A, Dohnt K, Tielen P, Jahn D, Becker J et al. Robustness and plasticity of metabolic pathway flux among uropathogenic isolates of Pseudomonas aeruginosa. PLoS One 2014; 9:e88368 [View Article][PubMed]
    [Google Scholar]
  3. Hoffman LR, Richardson AR, Houston LS, Kulasekara HD, Martens-Habbena W et al. Nutrient availability as a mechanism for selection of antibiotic tolerant Pseudomonas aeruginosa within the CF airway. PLoS Pathog 2010; 6:e1000712 [View Article][PubMed]
    [Google Scholar]
  4. D'Argenio DA, Wu M, Hoffman LR, Kulasekara HD, Déziel E et al. Growth phenotypes of Pseudomonas aeruginosa lasR mutants adapted to the airways of cystic fibrosis patients. Mol Microbiol 2007; 64:512–533 [View Article][PubMed]
    [Google Scholar]
  5. Rohmer L, Hocquet D, Miller SI. Are pathogenic bacteria just looking for food? Metabolism and microbial pathogenesis. Trends Microbiol 2011; 19:341–348 [View Article][PubMed]
    [Google Scholar]
  6. Son MS, Matthews WJ, Kang Y, Nguyen DT, Hoang TT. In vivo evidence of Pseudomonas aeruginosa nutrient acquisition and pathogenesis in the lungs of cystic fibrosis patients. Infect Immun 2007; 75:5313–5324 [View Article][PubMed]
    [Google Scholar]
  7. Schweizer HP, Po C. Cloning and nucleotide sequence of the glpD gene encoding sn-glycerol-3-phosphate dehydrogenase of Pseudomonas aeruginosa. J Bacteriol 1994; 176:2184–2193 [View Article][PubMed]
    [Google Scholar]
  8. Daniels JB, Scoffield J, Woolnough JL, Silo-Suh L. Impact of glycerol-3-phosphate dehydrogenase on virulence factor production by Pseudomonas aeruginosa. Can J Microbiol 2014; 60:857–863 [View Article][PubMed]
    [Google Scholar]
  9. Lee SA, Gallagher LA, Thongdee M, Staudinger BJ, Lippman S et al. General and condition-specific essential functions of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 2015; 112:5189–5194 [View Article][PubMed]
    [Google Scholar]
  10. Skurnik D, Roux D, Aschard H, Cattoir V, Yoder-Himes D et al. A comprehensive analysis of in vitro and in vivo genetic fitness of Pseudomonas aeruginosa using high-throughput sequencing of transposon libraries. PLoS Pathog 2013; 9:e1003582 [View Article][PubMed]
    [Google Scholar]
  11. Spoering AL, Vulic M, Lewis K. GlpD and PlsB participate in persister cell formation in Escherichia coli. J Bacteriol 2006; 188:5136–5144 [View Article][PubMed]
    [Google Scholar]
  12. Girgis HS, Harris K, Tavazoie S. Large mutational target size for rapid emergence of bacterial persistence. Proc Natl Acad Sci USA 2012; 109:12740–12745 [View Article][PubMed]
    [Google Scholar]
  13. Keren I, Kaldalu N, Spoering A, Wang Y, Lewis K. Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett 2004; 230:13–18 [View Article][PubMed]
    [Google Scholar]
  14. Mulcahy LR, Burns JL, Lory S, Lewis K. Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis. J Bacteriol 2010; 192:6191–6199 [View Article][PubMed]
    [Google Scholar]
  15. Luidalepp H, Jõers A, Kaldalu N, Tenson T. Age of inoculum strongly influences persister frequency and can mask effects of mutations implicated in altered persistence. J Bacteriol 2011; 193:3598–3605 [View Article][PubMed]
    [Google Scholar]
  16. Orvis J, Crabtree J, Galens K, Gussman A, Inman JM et al. Ergatis: a web interface and scalable software system for bioinformatics workflows. Bioinformatics 2010; 26:1488–1492 [View Article][PubMed]
    [Google Scholar]
  17. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009; 10:R25 [View Article][PubMed]
    [Google Scholar]
  18. Anders S, Pyl PT, Huber W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics 2015; 31:166–169 [View Article][PubMed]
    [Google Scholar]
  19. Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol 2010; 11:R106 [View Article][PubMed]
    [Google Scholar]
  20. Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 2000; 28:33–36 [View Article][PubMed]
    [Google Scholar]
  21. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000; 28:27–30 [View Article][PubMed]
    [Google Scholar]
  22. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25:402–408 [View Article][PubMed]
    [Google Scholar]
  23. Sokol PA. Production and utilization of pyochelin by clinical isolates of Pseudomonas cepacia. J Clin Microbiol 1986; 23:560–562[PubMed]
    [Google Scholar]
  24. Suh SJ, Shuman J, Carroll LP, Silo-Suh L. BEEP: an assay to detect bio-energetic and envelope permeability alterations in Pseudomonas aeruginosa. J Microbiol Methods 2016; 125:81–86 [View Article][PubMed]
    [Google Scholar]
  25. Tabata K, Hida F, Kiriyama T, Ishizaki N, Kamachi T et al. Measurement of soil bacterial colony temperatures and isolation of a high heat-producing bacterium. BMC Microbiol 2013; 13:56 [View Article][PubMed]
    [Google Scholar]
  26. Cozzarelli NR, Freedberg WB, Lin EC. Genetic control of L-alpha-glycerophosphate system in Escherichia coli. J Mol Biol 1968; 31:371–387 [View Article][PubMed]
    [Google Scholar]
  27. Steele MI, Lorenz D, Hatter K, Park A, Sokatch JR. Characterization of the mmsAB operon of Pseudomonas aeruginosa PAO encoding methylmalonate-semialdehyde dehydrogenase and 3-hydroxyisobutyrate dehydrogenase. J Biol Chem 1992; 267:13585–13592[PubMed]
    [Google Scholar]
  28. Battesti A, Majdalani N, Gottesman S. The RpoS-mediated general stress response in Escherichia coli. Annu Rev Microbiol 2011; 65:189–213 [View Article][PubMed]
    [Google Scholar]
  29. Kawakami T, Kuroki M, Ishii M, Igarashi Y, Arai H. Differential expression of multiple terminal oxidases for aerobic respiration in Pseudomonas aeruginosa. Environ Microbiol 2010; 12:1399–1412 [View Article][PubMed]
    [Google Scholar]
  30. Arai H, Kawakami T, Osamura T, Hirai T, Sakai Y et al. Enzymatic characterization and in vivo function of five terminal oxidases in Pseudomonas aeruginosa. J Bacteriol 2014; 196:4206–4215 [View Article][PubMed]
    [Google Scholar]
  31. Shah P, Nanduri B, Swiatlo E, Ma Y, Pendarvis K. Polyamine biosynthesis and transport mechanisms are crucial for fitness and pathogenesis of Streptococcus pneumoniae. Microbiology 2011; 157:504–515 [View Article][PubMed]
    [Google Scholar]
  32. Bitonti AJ, McCann PP, Sjoerdsma A. Restriction of bacterial growth by inhibition of polyamine biosynthesis by using monofluoromethylornithine, difluoromethylarginine and dicyclohexylammonium sulphate. Biochem J 1982; 208:435–441 [View Article][PubMed]
    [Google Scholar]
  33. Lee EJ, Pontes MH, Groisman EA. A bacterial virulence protein promotes pathogenicity by inhibiting the bacterium's own F1Fo ATP synthase. Cell 2013; 154:146–156 [View Article][PubMed]
    [Google Scholar]
  34. Zhang L, Alfano JR, Becker DF. Proline metabolism increases katG expression and oxidative stress resistance in Escherichia coli. J Bacteriol 2015; 197:431–440 [View Article][PubMed]
    [Google Scholar]
  35. Goncalves RL, Rothschild DE, Quinlan CL, Scott GK, Benz CC et al. Sources of superoxide/H2O2 during mitochondrial proline oxidation. Redox Biol 2014; 2:901–909 [View Article][PubMed]
    [Google Scholar]
  36. Prax M, Bertram R. Metabolic aspects of bacterial persisters. Front Cell Infect Microbiol 2014; 4:148 [View Article][PubMed]
    [Google Scholar]
  37. Radzikowski JL, Vedelaar S, Siegel D, Ortega ÁD, Schmidt A et al. Bacterial persistence is an active σS stress response to metabolic flux limitation. Mol Syst Biol 2016; 12:882 [View Article][PubMed]
    [Google Scholar]
  38. Kwan BW, Valenta JA, Benedik MJ, Wood TK. Arrested protein synthesis increases persister-like cell formation. Antimicrob Agents Chemother 2013; 57:1468–1473 [View Article][PubMed]
    [Google Scholar]
  39. Dörr T, Vulić M, Lewis K. Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biol 2010; 8:e1000317 [View Article][PubMed]
    [Google Scholar]
  40. Peterson CN, Levchenko I, Rabinowitz JD, Baker TA, Silhavy TJ. RpoS proteolysis is controlled directly by ATP levels in Escherichia coli. Genes Dev 2012; 26:548–553 [View Article][PubMed]
    [Google Scholar]
  41. Bunker JC, James AM. Microcalorimetric studies on the effects of media and environmental conditions on the growth of bacteria. Microbios 1986; 47:177–188[PubMed]
    [Google Scholar]
  42. Ding L, Li X, Liu P, Li S, Lv J. Study of the action of Se and Cu on the growth metabolism of Escherichia coli by microcalorimetry. Biol Trace Elem Res 2010; 137:364–372 [View Article][PubMed]
    [Google Scholar]
  43. Russell JB. The energy spilling reactions of bacteria and other organisms. J Mol Microbiol Biotechnol 2007; 13:1–11 [View Article][PubMed]
    [Google Scholar]
  44. Notley L, Ferenci T. Induction of RpoS-dependent functions in glucose-limited continuous culture: what level of nutrient limitation induces the stationary phase of Escherichia coli?. J Bacteriol 1996; 178:1465–1468 [View Article][PubMed]
    [Google Scholar]
  45. Ihssen J, Egli T. Specific growth rate and not cell density controls the general stress response in Escherichia coli. Microbiology 2004; 150:1637–1648 [View Article][PubMed]
    [Google Scholar]
  46. Battesti A, Majdalani N, Gottesman S. Stress sigma factor RpoS degradation and translation are sensitive to the state of central metabolism. Proc Natl Acad Sci USA 2015; 112:5159–5164 [View Article][PubMed]
    [Google Scholar]
  47. Amato SM, Fazen CH, Henry TC, Mok WW, Orman MA et al. The role of metabolism in bacterial persistence. Front Microbiol 2014; 5:70 [View Article][PubMed]
    [Google Scholar]
  48. Shan Y, Brown Gandt A, Rowe SE, Deisinger JP, Conlon BP et al. ATP-dependent persister formation in Escherichia coli. MBio 2017; 8:e02267-1614 [View Article]
    [Google Scholar]
  49. Meylan S, Porter CBM, Yang JH, Belenky P, Gutierrez A et al. Carbon sources tune antibiotic susceptibility in Pseudomonas aeruginosa via tricarboxylic acid cycle control. Cell Chem Biol 2017; 24:195–206 [View Article][PubMed]
    [Google Scholar]
  50. Hong SH, Wang X, O'Connor HF, Benedik MJ, Wood TK. Bacterial persistence increases as environmental fitness decreases. Microb Biotechnol 2012; 5:509–522 [View Article][PubMed]
    [Google Scholar]
  51. Wu N, He L, Cui P, Wang W, Yuan Y et al. Ranking of persister genes in the same Escherichia coli genetic background demonstrates varying importance of individual persister genes in tolerance to different antibiotics. Front Microbiol 2015; 6:1003 [View Article][PubMed]
    [Google Scholar]
  52. Murakami K, Ono T, Viducic D, Kayama S, Mori M et al. Role for rpoS gene of Pseudomonas aeruginosa in antibiotic tolerance. FEMS Microbiol Lett 2005; 242:161–167 [View Article][PubMed]
    [Google Scholar]
  53. Mlynarcik P, Kolar M. Starvation- and antibiotics-induced formation of persister cells in Pseudomonas aeruginosa. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2017; 161: [View Article][PubMed]
    [Google Scholar]
  54. Hobby GL, Meyer K, Chaffee E. Observations on the mechanism of action of penicillin. Exp Biol Med 1942; 50:281–285 [View Article]
    [Google Scholar]
  55. Dossantos RA, Alfadda A, Eto K, Kadowaki T, Silva JE. Evidence for a compensated thermogenic defect in transgenic mice lacking the mitochondrial glycerol-3-phosphate dehydrogenase gene. Endocrinology 2003; 144:5469–5479 [View Article][PubMed]
    [Google Scholar]
  56. Rousset S, Alves-Guerra MC, Mozo J, Miroux B, Cassard-Doulcier AM et al. The biology of mitochondrial uncoupling proteins. Diabetes 2004; 53:S130–S135 [View Article][PubMed]
    [Google Scholar]
  57. Mráček T, Drahota Z, Houštěk J. The function and the role of the mitochondrial glycerol-3-phosphate dehydrogenase in mammalian tissues. Biochim Biophys Acta 2013; 1827:401–410 [View Article][PubMed]
    [Google Scholar]
  58. Holloway BW, Krishnapillai V, Morgan AF. Chromosomal genetics of Pseudomonas. Microbiol Rev 1979; 43:73–102[PubMed]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.000646
Loading
/content/journal/micro/10.1099/mic.0.000646
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error