1887

Abstract

Given the widespread use and application of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas gene editing system across many fields, a major focus has been the development, engineering and discovery of molecular means to precisely control and regulate the enzymatic function of the Cas9 nuclease. To date, a variety of Cas9 variants and fusion assemblies have been proposed to provide temporally inducible and spatially controlled editing functions. The discovery of a new class of ‘anti-CRISPR’ proteins, evolved from bacteriophage in response to the prokaryotic nuclease-based immune system, provides a new platform for control over genomic editing. One Cas9-based application of interest to the field of population control is that of the ‘gene drive’. Here, we demonstrate use of the AcrIIA2 and AcrIIA4 proteins to inhibit active gene drive systems in budding yeast. Furthermore, an unbiased mutational scan reveals that titration of Cas9 inhibition may be possible by modification of the anti-CRISPR primary sequence.

Erratum
This article contains a correction applying to the following content:
Corrigendum: Gene drive inhibition by the anti-CRISPR proteins AcrIIA2 and AcrIIA4 in
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000635
2018-04-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/164/4/464.html?itemId=/content/journal/micro/10.1099/mic.0.000635&mimeType=html&fmt=ahah

References

  1. Sorek R, Lawrence CM, Wiedenheft B. CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu Rev Biochem 2013;82:237–266 [CrossRef][PubMed]
    [Google Scholar]
  2. Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 2014;346:1258096 [CrossRef][PubMed]
    [Google Scholar]
  3. Sternberg SH, Doudna JA. Expanding the Biologist's Toolkit with CRISPR-Cas9. Mol Cell 2015;58:568–574 [CrossRef][PubMed]
    [Google Scholar]
  4. Wright AV, Nuñez JK, Doudna JA. Biology and applications of CRISPR systems: Harnessing Nature's Toolbox for Genome Engineering. Cell 2016;164:29–44 [CrossRef][PubMed]
    [Google Scholar]
  5. Men K, Duan X, He Z, Yang Y, Yao S et al. CRISPR/Cas9-mediated correction of human genetic disease. Sci China Life Sci 2017;60:447–457 [CrossRef][PubMed]
    [Google Scholar]
  6. Mougiakos I, Bosma EF, de Vos WM, van Kranenburg R, van der Oost J. Next generation prokaryotic engineering: the CRISPR-Cas Toolkit. Trends Biotechnol 2016;34:575–587 [CrossRef][PubMed]
    [Google Scholar]
  7. Soppe JA, Lebbink RJ. Antiviral goes viral: Harnessing CRISPR/Cas9 to combat viruses in humans. Trends Microbiol 2017;25:833–850 [CrossRef][PubMed]
    [Google Scholar]
  8. Baltes NJ, Gil-Humanes J, Voytas DF. Genome engineering and agriculture: opportunities and challenges. Prog Mol Biol Transl Sci 2017;149:1–26 [CrossRef][PubMed]
    [Google Scholar]
  9. Estrela R, Cate JH. Energy biotechnology in the CRISPR-Cas9 era. Curr Opin Biotechnol 2016;38:79–84 [CrossRef][PubMed]
    [Google Scholar]
  10. Jakočiūnas T, Jensen MK, Keasling JD. CRISPR/Cas9 advances engineering of microbial cell factories. Metab Eng 2016;34:44–59 [CrossRef][PubMed]
    [Google Scholar]
  11. Gantz VM, Jasinskiene N, Tatarenkova O, Fazekas A, Macias VM et al. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc Natl Acad Sci USA 2015;112:E6736E6743 [CrossRef][PubMed]
    [Google Scholar]
  12. Hammond A, Galizi R, Kyrou K, Simoni A, Siniscalchi C et al. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat Biotechnol 2016;34:78–83 [CrossRef][PubMed]
    [Google Scholar]
  13. Champer J, Reeves R, Oh SY, Liu C, Liu J et al. Novel CRISPR/Cas9 gene drive constructs reveal insights into mechanisms of resistance allele formation and drive efficiency in genetically diverse populations. PLoS Genet 2017;13:e1006796 [CrossRef][PubMed]
    [Google Scholar]
  14. Drury DW, Dapper AL, Siniard DJ, Zentner GE, Wade MJ. CRISPR/Cas9 gene drives in genetically variable and nonrandomly mating wild populations. Sci Adv 2017;3:e1601910 [CrossRef][PubMed]
    [Google Scholar]
  15. Hammond AM, Kyrou K, Bruttini M, North A, Galizi R et al. The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito. PLoS Genet 2017;13:e1007039 [CrossRef][PubMed]
    [Google Scholar]
  16. Unckless RL, Clark AG, Messer PW. Evolution of resistance against CRISPR/Cas9 gene drive. Genetics 2017;205:827–841 [CrossRef][PubMed]
    [Google Scholar]
  17. Noble C, Olejarz J, Esvelt KM, Church GM, Nowak MA. Evolutionary dynamics of CRISPR gene drives. Sci Adv 2017;3:e1601964 [CrossRef][PubMed]
    [Google Scholar]
  18. Marshall JM, Buchman A, Sánchez C HM, Akbari OS. Overcoming evolved resistance to population-suppressing homing-based gene drives. Sci Rep 2017;7:3776 [CrossRef][PubMed]
    [Google Scholar]
  19. Webber BL, Raghu S, Edwards OR. Opinion: Is CRISPR-based gene drive a biocontrol silver bullet or global conservation threat?. Proc Natl Acad Sci USA 2015;112:10565–10567 [CrossRef][PubMed]
    [Google Scholar]
  20. Dicarlo JE, Chavez A, Dietz SL, Esvelt KM, Church GM. Safeguarding CRISPR-Cas9 gene drives in yeast. Nat Biotechnol 2015;33:1250–1255 [CrossRef][PubMed]
    [Google Scholar]
  21. Abbasi J. National academies hit the brakes on gene drive-modified organisms. JAMA 2016;316:482–483 [CrossRef][PubMed]
    [Google Scholar]
  22. Courtier-Orgogozo V, Morizot B, Boëte C. Agricultural pest control with CRISPR-based gene drive: time for public debate: should we use gene drive for pest control?. EMBO Rep 2017;18:878–880 [CrossRef][PubMed]
    [Google Scholar]
  23. Pawluk A, Amrani N, Zhang Y, Garcia B, Hidalgo-Reyes Y et al. Naturally occurring off-switches for CRISPR-Cas9. Cell 2016;167:1829–1838 [CrossRef][PubMed]
    [Google Scholar]
  24. Rauch BJ, Silvis MR, Hultquist JF, Waters CS, McGregor MJ et al. Inhibition of CRISPR-Cas9 with bacteriophage proteins. Cell 2017;168:150–158 [CrossRef][PubMed]
    [Google Scholar]
  25. Dong D, Guo M, Wang S, Zhu Y, Wang S et al. Structural basis of CRISPR-SpyCas9 inhibition by an anti-CRISPR protein. Nature 2017;546:436–439 [CrossRef][PubMed]
    [Google Scholar]
  26. Yang H, Patel DJ. Inhibition mechanism of an anti-CRISPR suppressor AcrIIA4 targeting SpyCas9. Mol Cell 2017;67:117–127 [CrossRef][PubMed]
    [Google Scholar]
  27. Dow LE, Fisher J, O'Rourke KP, Muley A, Kastenhuber ER et al. Inducible in vivo genome editing with CRISPR-Cas9. Nat Biotechnol 2015;33:390–394 [CrossRef][PubMed]
    [Google Scholar]
  28. Polstein LR, Gersbach CA. A light-inducible CRISPR-Cas9 system for control of endogenous gene activation. Nat Chem Biol 2015;11:198–200 [CrossRef][PubMed]
    [Google Scholar]
  29. Nuñez JK, Harrington LB, Doudna JA. Chemical and biophysical modulation of Cas9 for tunable genome engineering. ACS Chem Biol 2016;11:681–688 [CrossRef][PubMed]
    [Google Scholar]
  30. Cao J, Wu L, Zhang SM, Lu M, Cheung WK et al. An easy and efficient inducible CRISPR/Cas9 platform with improved specificity for multiple gene targeting. Nucleic Acids Res 2016;44:gkw660 [CrossRef][PubMed]
    [Google Scholar]
  31. Zetsche B, Volz SE, Zhang F. A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat Biotechnol 2015;33:139–142 [CrossRef][PubMed]
    [Google Scholar]
  32. Liu KI, Ramli MN, Woo CW, Wang Y, Zhao T et al. A chemical-inducible CRISPR-Cas9 system for rapid control of genome editing. Nat Chem Biol 2016;12:980–987 [CrossRef][PubMed]
    [Google Scholar]
  33. Richter F, Fonfara I, Bouazza B, Schumacher CH, Bratovič M et al. Engineering of temperature- and light-switchable Cas9 variants. Nucleic Acids Res 2016;44:10003–10014 [CrossRef][PubMed]
    [Google Scholar]
  34. Shin J, Jiang F, Liu JJ, Bray NL, Rauch BJ et al. Disabling Cas9 by an anti-CRISPR DNA mimic. Sci Adv 2017;3:e1701620 [CrossRef][PubMed]
    [Google Scholar]
  35. Sambrook J, Russell DW. Molecular Cloning: A Laboratory Manual, 3rd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2001
    [Google Scholar]
  36. Finnigan GC, Thorner J. mCAL: a new approach for versatile multiplex action of Cas9 using one sgRNA and loci flanked by a programmed target sequence. G3 (Bethesda, Md) 2016;6:2147–2156 [CrossRef][PubMed]
    [Google Scholar]
  37. Longtine MS, McKenzie A3rd, Demarini DJ, Shah NG, Wach A et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 1998;14:953–961 [CrossRef][PubMed]
    [Google Scholar]
  38. Finnigan GC, Thorner J. Complexin vivo ligation using homologous recombination and high-efficiency plasmid rescue from Saccharomyces cerevisiae. Bio Protoc 2015;5:e1521 [CrossRef][PubMed]
    [Google Scholar]
  39. Eckert-Boulet N, Pedersen ML, Krogh BO, Lisby M. Optimization of ordered plasmid assembly by gap repair in Saccharomyces cerevisiae. Yeast (Chichester, England) 2012;29:323–334 [CrossRef][PubMed]
    [Google Scholar]
  40. Roggenkamp E, Giersch RM, Schrock MN, Turnquist E, Halloran M et al. Tuning CRISPR-Cas9 gene drives in Saccharomyces cerevisiae. G3 2018;g3.300557.2017 10.1534/g3.117.300557 [CrossRef][PubMed]
    [Google Scholar]
  41. Dicarlo JE, Norville JE, Mali P, Rios X, Aach J et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 2013;41:4336–4343 [CrossRef][PubMed]
    [Google Scholar]
  42. Roggenkamp E, Giersch RM, Wedeman E, Eaton M, Turnquist E et al. CRISPR-UnLOCK: multipurpose Cas9-based strategies for conversion of yeast libraries and strains. Front Microbiol 2017;8:8 [CrossRef][PubMed]
    [Google Scholar]
  43. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM et al. UCSF Chimera-a visualization system for exploratory research and analysis. J Comput Chem 2004;25:1605–1612 [CrossRef][PubMed]
    [Google Scholar]
  44. Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A et al. Global analysis of protein expression in yeast. Nature 2003;425:737–741 [CrossRef][PubMed]
    [Google Scholar]
  45. Finnigan GC, Takagi J, Cho C, Thorner J. Comprehensive genetic analysis of paralogous terminal septin subunits Shs1 and Cdc11 in Saccharomyces cerevisiae. Genetics 2015;200:821–841 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000635
Loading
/content/journal/micro/10.1099/mic.0.000635
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error