1887

Abstract

As a master regulator, the alternative sigma factor RpoS coordinates the transcription of genes associated with protection against environmental stresses in bacteria. In Pseudomonas aeruginosa, RpoS is also involved in quorum sensing and virulence. The cellular RpoS level is regulated at multiple levels, whereas the post-transcriptional regulation of rpoS in P. aeruginosa remains unclear. To identify and characterize small regulatory RNAs (sRNAs) regulating RpoS in P. aeruginosa, an sRNA library expressing a total of 263 sRNAs was constructed to examine their regulatory roles on rpoS expression. Our results demonstrate that rpoS expression is repressed by the RpoS-dependent sRNA RgsA at the post-transcriptional level. Unlike OxyS, an sRNA previously known to repress rpoS expression under oxidative stress in Escherichia coli, RgsA represses rpoS expression during the exponential phase. This repression requires the RNA chaperone Hfq. Furthermore, the 71–77 conserved region of RgsA is necessary for full repression of rpoS expression, and the −25 to +27 region of rpoS mRNA is sufficient for RgsA-mediated rpoS repression. Together, our results not only add RgsA to the RpoS regulatory circuits but also highlight the complexity of interplay between sRNAs and transcriptional regulators in bacteria.

Keyword(s): Hfq , Pseudomonas aeruginosa , RgsA , RpoS and small RNA
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000632
2018-02-23
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/164/4/716.html?itemId=/content/journal/micro/10.1099/mic.0.000632&mimeType=html&fmt=ahah

References

  1. Storz G, Vogel J, Wassarman KM. Regulation by small RNAs in bacteria: expanding frontiers. Mol Cell 2011;43:880–891 [CrossRef][PubMed]
    [Google Scholar]
  2. Gottesman S, Storz G. Bacterial small RNA regulators: versatile roles and rapidly evolving variations. Cold Spring Harb Perspect Biol 2011;3:a003798 [CrossRef][PubMed]
    [Google Scholar]
  3. Caldelari I, Chao Y, Romby P, Vogel J. RNA-mediated regulation in pathogenic bacteria. Cold Spring Harb Perspect Med 2013;3:a010298 [CrossRef][PubMed]
    [Google Scholar]
  4. Bossi L, Figueroa-Bossi N. Competing endogenous RNAs: a target-centric view of small RNA regulation in bacteria. Nat Rev Microbiol 2016;14:775–784 [CrossRef][PubMed]
    [Google Scholar]
  5. Kavita K, de Mets F, Gottesman S. New aspects of RNA-based regulation by Hfq and its partner sRNAs. Curr Opin Microbiol 2017;42:53–61 [CrossRef][PubMed]
    [Google Scholar]
  6. Wagner EG, Romby P. Small RNAs in bacteria and archaea: who they are, what they do, and how they do it. Adv Genet 2015;90:133–208 [CrossRef][PubMed]
    [Google Scholar]
  7. Vogel J, Luisi BF. Hfq and its constellation of RNA. Nat Rev Microbiol 2011;9:578–589 [CrossRef][PubMed]
    [Google Scholar]
  8. Hengge-Aronis R. Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev 2002;66:373–395 [CrossRef][PubMed]
    [Google Scholar]
  9. Dong T, Schellhorn HE. Role of RpoS in virulence of pathogens. Infect Immun 2010;78:887–897 [CrossRef][PubMed]
    [Google Scholar]
  10. Schuster M, Hawkins AC, Harwood CS, Greenberg EP. The Pseudomonas aeruginosa RpoS regulon and its relationship to quorum sensing. Mol Microbiol 2004;51:973–985 [CrossRef][PubMed]
    [Google Scholar]
  11. Venturi V. Control of rpoS transcription in Escherichia coli and Pseudomonas: why so different?. Mol Microbiol 2003;49:1–9 [CrossRef][PubMed]
    [Google Scholar]
  12. Mika F, Hengge R. Small RNAs in the control of RpoS, CsgD, and biofilm architecture of Escherichia coli. RNA Biol 2014;11:494–507 [CrossRef][PubMed]
    [Google Scholar]
  13. Battesti A, Majdalani N, Gottesman S. The RpoS-mediated general stress response in Escherichia coli. Annu Rev Microbiol 2011;65:189–213 [CrossRef][PubMed]
    [Google Scholar]
  14. Majdalani N, Cunning C, Sledjeski D, Elliott T, Gottesman S. DsrA RNA regulates translation of RpoS message by an anti-antisense mechanism, independent of its action as an antisilencer of transcription. Proc Natl Acad Sci USA 1998;95:12462–12467 [CrossRef][PubMed]
    [Google Scholar]
  15. Sedlyarova N, Shamovsky I, Bharati BK, Epshtein V, Chen J et al. sRNA-mediated control of transcription termination in E. coli. Cell 2016;167:111.e13–121.e13 [CrossRef][PubMed]
    [Google Scholar]
  16. Repoila F, Majdalani N, Gottesman S. Small non-coding RNAs, co-ordinators of adaptation processes in Escherichia coli: the RpoS paradigm. Mol Microbiol 2003;48:855–861 [CrossRef][PubMed]
    [Google Scholar]
  17. Zhang A, Altuvia S, Tiwari A, Argaman L, Hengge-Aronis R et al. The OxyS regulatory RNA represses rpoS translation and binds the Hfq (HF-I) protein. Embo J 1998;17:6061–6068 [CrossRef][PubMed]
    [Google Scholar]
  18. Sevo M, Buratti E, Venturi V. Ribosomal protein S1 specifically binds to the 5' untranslated region of the Pseudomonas aeruginosa stationary-phase sigma factor rpoS mRNA in the logarithmic phase of growth. J Bacteriol 2004;186:4903–4909 [CrossRef][PubMed]
    [Google Scholar]
  19. Jovcic B, Bertani I, Venturi V, Topisirovic L, Kojic M. 5' Untranslated region of the Pseudomonas putida WCS358 stationary phase sigma factor rpoS mRNA is involved in RpoS translational regulation. J Microbiol 2008;46:56–61 [CrossRef][PubMed]
    [Google Scholar]
  20. Sonnleitner E, Hagens S, Rosenau F, Wilhelm S, Habel A et al. Reduced virulence of a hfq mutant of Pseudomonas aeruginosa O1. Microb Pathog 2003;35:217–228 [CrossRef][PubMed]
    [Google Scholar]
  21. Gómez-Lozano M, Marvig RL, Molin S, Long KS. Genome-wide identification of novel small RNAs in Pseudomonas aeruginosa. Environ Microbiol 2012;14:2006–2016 [CrossRef][PubMed]
    [Google Scholar]
  22. González N, Heeb S, Valverde C, Kay E, Reimmann C et al. Genome-wide search reveals a novel GacA-regulated small RNA in Pseudomonas species. BMC Genomics 2008;9:167 [CrossRef][PubMed]
    [Google Scholar]
  23. Huerta JM, Aguilar I, López-Pliego L, Fuentes-Ramírez LE, Castañeda M. The role of the ncRNA RgsA in the oxidative stress response and biofilm formation in Azotobacter vinelandii. Curr Microbiol 2016;72:671–679 [CrossRef][PubMed]
    [Google Scholar]
  24. Livny J, Brencic A, Lory S, Waldor MK. Identification of 17 Pseudomonas aeruginosa sRNAs and prediction of sRNA-encoding genes in 10 diverse pathogens using the bioinformatic tool sRNAPredict2. Nucleic Acids Res 2006;34:3484–3493 [CrossRef][PubMed]
    [Google Scholar]
  25. Lu P, Wang Y, Zhang Y, Hu Y, Thompson KM et al. RpoS-dependent sRNA RgsA regulates Fis and AcpP in Pseudomonas aeruginosa. Mol Microbiol 2016;102:244–259 [CrossRef][PubMed]
    [Google Scholar]
  26. Park SH, Butcher BG, Anderson Z, Pellegrini N, Bao Z et al. Analysis of the small RNA P16/RgsA in the plant pathogen Pseudomonas syringae pv. tomato strain DC3000. Microbiology 2013;159:296–306 [CrossRef][PubMed]
    [Google Scholar]
  27. Milton DL, O'Toole R, Horstedt P, Wolf-Watz H. Flagellin A is essential for the virulence of Vibrio anguillarum. J Bacteriol 1996;178:1310–1319 [CrossRef][PubMed]
    [Google Scholar]
  28. Miller J. Experiments in Molecular Genetics Cold Spring Harbour: Cold Spring Harbor Press; 1972
    [Google Scholar]
  29. Kojic M, Aguilar C, Venturi V. TetR family member psrA directly binds the Pseudomonas rpoS and psrA promoters. J Bacteriol 2002;184:2324–2330 [CrossRef][PubMed]
    [Google Scholar]
  30. Jousselin A, Metzinger L, Felden B. On the facultative requirement of the bacterial RNA chaperone, Hfq. Trends Microbiol 2009;17:399–405 [CrossRef][PubMed]
    [Google Scholar]
  31. Sonnleitner E, González N, Haas D. Small RNAs of Pseudomonas spp. In Ramos J, Filloux A. (editors) Pseudomonas—Molecular Microbiology, Infection and Biodiversityvol. 6 Dordrecht: Springer; 2010; pp.3–28
    [Google Scholar]
  32. Brown L, Elliott T. Mutations that increase expression of the rpoS gene and decrease its dependence on hfq function in Salmonella typhimurium. J Bacteriol 1997;179:656–662 [CrossRef][PubMed]
    [Google Scholar]
  33. Urban JH, Vogel J. Translational control and target recognition by Escherichia coli small RNAs in vivo. Nucleic Acids Res 2007;35:1018–1037 [CrossRef][PubMed]
    [Google Scholar]
  34. Mandin P, Gottesman S. Integrating anaerobic/aerobic sensing and the general stress response through the ArcZ small RNA. Embo J 2010;29:3094–3107 [CrossRef][PubMed]
    [Google Scholar]
  35. de Lay N, Gottesman S. A complex network of small non-coding RNAs regulate motility in Escherichia coli. Mol Microbiol 2012;86:524–538 [CrossRef][PubMed]
    [Google Scholar]
  36. Coornaert A, Chiaruttini C, Springer M, Guillier M. Post-transcriptional control of the Escherichia coli PhoQ-PhoP two-component system by multiple sRNAs involves a novel pairing region of GcvB. PLoS Genet 2013;9:e1003156 [CrossRef][PubMed]
    [Google Scholar]
  37. Lee HJ, Gottesman S. sRNA roles in regulating transcriptional regulators: Lrp and SoxS regulation by sRNAs. Nucleic Acids Res 2016;44:6907–6923 [CrossRef][PubMed]
    [Google Scholar]
  38. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 2003;31:3406–3415 [CrossRef][PubMed]
    [Google Scholar]
  39. Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R. Fast and effective prediction of microRNA/target duplexes. RNA 2004;10:1507–1517 [CrossRef][PubMed]
    [Google Scholar]
  40. Updegrove TB, Wartell RM. The influence of Escherichia coli Hfq mutations on RNA binding and sRNA•mRNA duplex formation in rpoS riboregulation. Biochim Biophys Acta 2011;1809:532–540 [CrossRef][PubMed]
    [Google Scholar]
  41. Zhang A, Wassarman KM, Ortega J, Steven AC, Storz G. The Sm-like Hfq protein increases OxyS RNA interaction with target mRNAs. Mol Cell 2002;9:11–22 [CrossRef][PubMed]
    [Google Scholar]
  42. Simon R, Priefer U, Pühler A. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Biotechnology 1983;1:784–791 [CrossRef]
    [Google Scholar]
  43. Blumer C, Heeb S, Pessi G, Haas D. Global GacA-steered control of cyanide and exoprotease production in Pseudomonas fluorescens involves specific ribosome binding sites. Proc Natl Acad Sci USA 1999;96:14073–14078 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000632
Loading
/content/journal/micro/10.1099/mic.0.000632
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error