1887

Abstract

Translation initiation in 50–70 % of transcripts in requires base pairing between the Shine–Dalgarno (SD) motif in the mRNA and the anti-SD motif at the 3′ end of the 16S rRNA. However, 30–50 % of transcripts are non-canonical and are not preceded by an SD motif. The 5′ ends of 44 transcripts were determined, all of which contained a 5′-UTR (no leaderless transcripts), but only a minority contained an SD motif. The 5′-UTR lengths were compared with those listed in RegulonDB and reported in previous publications, and the identities and differences were obtained in all possible combinations. We aimed to quantify the translational efficiencies of non-canonical 5′-UTRs using GusA reporter gene assays and Northern blot analyses. Ten non-canonical 5′-UTRs and two control 5′-UTRs with an SD motif were cloned upstream of the gene. The translational efficiencies were quantified under five different conditions (different growth rates via two different temperatures and two different carbon sources, and heat shock). The translational efficiencies of the non-canonical 5′-UTRs varied widely, from 5 to 384 % of the positive control. In addition, the non-canonical transcripts did not exhibit a common regulatory pattern with changing environmental parameters. No correlation could be observed between the translational efficiencies of the non-canonical 5′-UTRs and their lengths, sequences, GC content, or predicted secondary structures. The introduction of an SD motif enhanced the translational efficiency of a poorly translated non-canonical transcript, while the efficiency of a well-translated non-canonical transcript remained unchanged. Taken together, the mechanisms of translation initiation at non-canonical transcripts in still need to be elucidated.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000619
2018-04-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/164/4/646.html?itemId=/content/journal/micro/10.1099/mic.0.000619&mimeType=html&fmt=ahah

References

  1. Shine J, Dalgarno L. The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci USA 1974;71:1342–1346 [CrossRef][PubMed]
    [Google Scholar]
  2. Steitz JA, Jakes K. How ribosomes select initiator regions in mRNA: base pair formation between the 3' terminus of 16S rRNA and the mRNA during initiation of protein synthesis in Escherichia coli. Proc Natl Acad Sci USA 1975;72:4734–4738 [CrossRef][PubMed]
    [Google Scholar]
  3. Jacob WF, Santer M, Dahlberg AE. A single base change in the Shine-Dalgarno region of 16S rRNA of Escherichia coli affects translation of many proteins. Proc Natl Acad Sci USA 1987;84:4757–4761 [CrossRef][PubMed]
    [Google Scholar]
  4. Hui A, de Boer HA. Specialized ribosome system: preferential translation of a single mRNA species by a subpopulation of mutated ribosomes in Escherichia coli. Proc Natl Acad Sci USA 1987;84:4762–4766 [CrossRef][PubMed]
    [Google Scholar]
  5. Mawn MV, Fournier MJ, Tirrell DA, Mason TL. Depletion of free 30S ribosomal subunits in Escherichia coli by expression of RNA containing Shine-Dalgarno-like sequences. J Bacteriol 2002;184:494–502 [CrossRef][PubMed]
    [Google Scholar]
  6. Vimberg V, Tats A, Remm M, Tenson T. Translation initiation region sequence preferences in Escherichia coli. BMC Mol Biol 2007;8:100 [CrossRef][PubMed]
    [Google Scholar]
  7. Kaminishi T, Wilson DN, Takemoto C, Harms JM, Kawazoe M et al. A snapshot of the 30S ribosomal subunit capturing mRNA via the Shine-Dalgarno interaction. Structure 2007;15:289–297 [CrossRef][PubMed]
    [Google Scholar]
  8. Korostelev A, Trakhanov S, Asahara H, Laurberg M, Lancaster L et al. Interactions and dynamics of the Shine Dalgarno helix in the 70S ribosome. Proc Natl Acad Sci USA 2007;104:16840–16843 [CrossRef][PubMed]
    [Google Scholar]
  9. Chen H, Bjerknes M, Kumar R, Jay E. Determination of the optimal aligned spacing between the Shine-Dalgarno sequence and the translation initation codon of Escherichia coli mRNAs. Nucleic Acids Res 1994;22:4953–4957[Crossref]
    [Google Scholar]
  10. Brown JW, Daniels CJ, Reeve JN. Gene structure, organization, and expression in archaebacteria. Crit Rev Microbiol 1989;16:287–337 [CrossRef][PubMed]
    [Google Scholar]
  11. Gold L, Pribnow D, Schneider T, Shinedling S, Singer BS et al. Translational initiation in prokaryotes. Annu Rev Microbiol 1981;35:365–403 [CrossRef][PubMed]
    [Google Scholar]
  12. Gualerzi CO, Pon CL. Initiation of mRNA translation in prokaryotes. Biochemistry 1990;29:5881–5889 [CrossRef][PubMed]
    [Google Scholar]
  13. Laursen BS, Sørensen HP, Mortensen KK, Sperling-Petersen HU. Initiation of protein synthesis in bacteria. Microbiol Mol Biol Rev 2005;69:101–123 [CrossRef][PubMed]
    [Google Scholar]
  14. Marintchev A, Wagner G. Translation initiation: structures, mechanisms and evolution. Q Rev Biophys 2004;37:197–284 [CrossRef][PubMed]
    [Google Scholar]
  15. Ma J, Campbell A, Karlin S. Correlations between Shine-Dalgarno sequences and gene features such as predicted expression levels and operon structures. J Bacteriol 2002;184:5733–5745 [CrossRef][PubMed]
    [Google Scholar]
  16. Chang B, Halgamuge S, Tang SL. Analysis of SD sequences in completed microbial genomes: non-SD-led genes are as common as SD-led genes. Gene 2006;373:90–99 [CrossRef][PubMed]
    [Google Scholar]
  17. Kramer P, Gäbel K, Pfeiffer F, Soppa J. Haloferax volcanii, a prokaryotic species that does not use the Shine Dalgarno mechanism for translation initiation at 5'-UTRs. PLoS One 2014;9:e94979 [CrossRef][PubMed]
    [Google Scholar]
  18. Accetto T, Avguštin G. Inability of Prevotella bryantii to form a functional Shine-Dalgarno interaction reflects unique evolution of ribosome binding sites in Bacteroidetes. PLoS One 2011;6:e22914 [CrossRef][PubMed]
    [Google Scholar]
  19. Malys N, McCarthy JE. Translation initiation: variations in the mechanism can be anticipated. Cell Mol Life Sci 2011;68:991–1003 [CrossRef][PubMed]
    [Google Scholar]
  20. Nakagawa S, Niimura Y, Miura K, Gojobori T. Dynamic evolution of translation initiation mechanisms in prokaryotes. Proc Natl Acad Sci USA 2010;107:6382–6387 [CrossRef][PubMed]
    [Google Scholar]
  21. Boni IV. [Diverse molecular mechanisms for translation initiation in prokaryotes]. Mol Biol 2006;40:587–596 [CrossRef][PubMed]
    [Google Scholar]
  22. Madigan M, Martinko J, Stahl D, Clark D. Brock Biology of Microorganisms Pearson Education Inc: San Francisco; 2012
    [Google Scholar]
  23. Fuglsang A. Analysis of 5' UTR composition and gene expression: canonical versus non-canonical start codons. Biochem Biophys Res Commun 2005;335:71–75 [CrossRef][PubMed]
    [Google Scholar]
  24. Shultzaberger RK, Bucheimer RE, Rudd KE, Schneider TD. Anatomy of Escherichia coli ribosome binding sites. J Mol Biol 2001;313:215–228 [CrossRef][PubMed]
    [Google Scholar]
  25. Grill S, Moll I, Giuliodori AM, Gualerzi CO, Bläsi U. Temperature-dependent translation of leaderless and canonical mRNAs in Escherichia coli. FEMS Microbiol Lett 2002;211:161–167 [CrossRef][PubMed]
    [Google Scholar]
  26. Moll I, Grill S, Gualerzi CO, Bläsi U. Leaderless mRNAs in bacteria: surprises in ribosomal recruitment and translational control. Mol Microbiol 2002;43:239–246 [CrossRef][PubMed]
    [Google Scholar]
  27. Moll I, Hirokawa G, Kiel MC, Kaji A, Bläsi U. Translation initiation with 70S ribosomes: an alternative pathway for leaderless mRNAs. Nucleic Acids Res 2004;32:3354–3363 [CrossRef][PubMed]
    [Google Scholar]
  28. Tedin K, Moll I, Grill S, Resch A, Graschopf A et al. Translation initiation factor 3 antagonizes authentic start codon selection on leaderless mRNAs. Mol Microbiol 1999;31:67–77 [CrossRef][PubMed]
    [Google Scholar]
  29. Marzi S, Myasnikov AG, Serganov A, Ehresmann C, Romby P et al. Structured mRNAs regulate translation initiation by binding to the platform of the ribosome. Cell 2007;130:1019–1031 [CrossRef][PubMed]
    [Google Scholar]
  30. Tchufistova LS, Komarova AV, Boni IV. A key role for the mRNA leader structure in translational control of ribosomal protein S1 synthesis in gamma-proteobacteria. Nucleic Acids Res 2003;31:6996–7002 [CrossRef][PubMed]
    [Google Scholar]
  31. Skouv J, Schnier J, Rasmussen MD, Subramanian AR, Pedersen S. Ribosomal protein S1 of Escherichia coli is the effector for the regulation of its own synthesis. J Biol Chem 1990;265:17044–17049[PubMed]
    [Google Scholar]
  32. Pedersen S, Skouv J, Kajitani M, Ishihama A. Transcriptional organization of the rpsA operon of Escherichia coli. Mol Gen Genet 1984;196:135–140 [CrossRef][PubMed]
    [Google Scholar]
  33. Bullock W, Fernandez J, Short J. Xl1-Blue: A high-efficiency plasmid transforming recA Escherichia coli strain with beta-Galactosidase selection. Biotechniques 1987;5:376–379
    [Google Scholar]
  34. Haldimann A, Wanner BL. Conditional-replication, integration, excision, and retrieval plasmid-host systems for gene structure-function studies of bacteria. J Bacteriol 2001;183:6384–6393 [CrossRef][PubMed]
    [Google Scholar]
  35. Green MR, Sambrook J. Molecular Cloning: A Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2012
    [Google Scholar]
  36. Guzman LM, Belin D, Carson MJ, Beckwith J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 1995;177:4121–4130 [CrossRef][PubMed]
    [Google Scholar]
  37. Wagner EGH, Vogel J. Approaches to identify novel non-messenger RNAs in Bacteria and to investigate into their Biological Functions: Functional Analysis of identified Non-mRNAs. In Hartmann RK, Albrecht Bindereif AS, Westhof AE. (editors) Handbook of RNA Biochestry Weinhein, Germany: WILEY-VCH Verlag GmbH Co KGaA; 2009; pp.614–642
    [Google Scholar]
  38. Jefferson RA, Burgess SM, Hirsh D. beta-Glucuronidase from Escherichia coli as a gene-fusion marker. Proc Natl Acad Sci USA 1986;83:8447–8451 [CrossRef][PubMed]
    [Google Scholar]
  39. Hering O, Brenneis M, Beer J, Suess B, Soppa J. A novel mechanism for translation initiation operates in haloarchaea. Mol Microbiol 2009;71:1451–1463 [CrossRef][PubMed]
    [Google Scholar]
  40. Zhou J, Rudd KE. EcoGene 3.0. Nucleic Acids Res 2013;41:D613–D624 [CrossRef][PubMed]
    [Google Scholar]
  41. Pfeiffer F, Broicher A, Gillich T, Klee K, Mejía J et al. Genome information management and integrated data analysis with HaloLex. Arch Microbiol 2008;190:281–299 [CrossRef][PubMed]
    [Google Scholar]
  42. Salgado H, Peralta-Gil M, Gama-Castro S, Santos-Zavaleta A, Muñiz-Rascado L et al. RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more. Nucleic Acids Res 2013;41:D203–D213 [CrossRef][PubMed]
    [Google Scholar]
  43. Gorodkin J, Heyer LJ, Brunak S, Stormo GD. Displaying the information contents of structural RNA alignments: the structure logos. Comput Appl Biosci 1997;13:583–586[PubMed]
    [Google Scholar]
  44. Bailey TL, Boden M, Buske FA, Frith M, Grant CE et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 2009;37:W202–W208 [CrossRef][PubMed]
    [Google Scholar]
  45. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 2003;31:3406–3415 [CrossRef][PubMed]
    [Google Scholar]
  46. Lange C, Lehr M, Zerulla K, Ludwig P, Schweitzer J et al. Effects of Kasugamycin on the translatome of Escherichia coli. PLoS One 2017;12:e0168143 [CrossRef][PubMed]
    [Google Scholar]
  47. Romero DA, Hasan AH, Lin YF, Kime L, Ruiz-Larrabeiti O et al. A comparison of key aspects of gene regulation in Streptomyces coelicolor and Escherichia coli using nucleotide-resolution transcription maps produced in parallel by global and differential RNA sequencing. Mol Microbiol 2014;94:963–987 [CrossRef][PubMed]
    [Google Scholar]
  48. Mendoza-Vargas A, Olvera L, Olvera M, Grande R, Vega-Alvarado L et al. Genome-wide identification of transcription start sites, promoters and transcription factor binding sites in E. coli. PLoS One 2009;4:e7526 [CrossRef][PubMed]
    [Google Scholar]
  49. Sawers RG. Differential turnover of the multiple processed transcripts of the Escherichia coli focA-pflB operon. Microbiology 2006;152:2197–2205 [CrossRef][PubMed]
    [Google Scholar]
  50. Thomason MK, Bischler T, Eisenbart SK, Förstner KU, Zhang A et al. Global transcriptional start site mapping using differential RNA sequencing reveals novel antisense RNAs in Escherichia coli. J Bacteriol 2015;197:18–28 [CrossRef][PubMed]
    [Google Scholar]
  51. Wegener M, Vogtmann K, Huber M, Laass S, Soppa J. The glpD gene is a novel reporter gene for E. coli that is superior to established reporter genes like lacZ and gusA. J Microbiol Methods 2016;131:181–187 [CrossRef][PubMed]
    [Google Scholar]
  52. Wagner LA, Gesteland RF, Dayhuff TJ, Weiss RB. An efficient Shine-Dalgarno sequence but not translation is necessary for lacZ mRNA stability in Escherichia coli. J Bacteriol 1994;176:1683–1688 [CrossRef][PubMed]
    [Google Scholar]
  53. Yarchuk O, Iost I, Dreyfus M. The relation between translation and mRNA degradation in the lacZ gene. Biochimie 1991;73:1533–1541 [CrossRef][PubMed]
    [Google Scholar]
  54. Yarchuk O, Jacques N, Guillerez J, Dreyfus M. Interdependence of translation, transcription and mRNA degradation in the lacZ gene. J Mol Biol 1992;226:581–596 [CrossRef][PubMed]
    [Google Scholar]
  55. Thouvenot B, Charpentier B, Branlant C. The strong efficiency of the Escherichia coli gapA P1 promoter depends on a complex combination of functional determinants. Biochem J 2004;383:371–382 [CrossRef][PubMed]
    [Google Scholar]
  56. Ehrenberg M, Bremer H, Dennis PP. Medium-dependent control of the bacterial growth rate. Biochimie 2013;95:643–658 [CrossRef][PubMed]
    [Google Scholar]
  57. Kleinsteuber S, Quiñones A. Expression of the dnaB gene of Escherichia coli is inducible by replication-blocking DNA damage in a recA-independent manner. Mol Gen Genet 1995;248:695–702 [CrossRef][PubMed]
    [Google Scholar]
  58. Tesfa-Selase F, Drabble WT. Regulation of the gua operon of Escherichia coli by the DnaA protein. Mol Gen Genet 1992;231:256–264[PubMed]
    [Google Scholar]
  59. Bockamp EO, Blasco R, Viñuela E. Escherichia coli thymidine kinase: nucleotide sequence of the gene and relationships to other thymidine kinases. Gene 1991;101:9–14 [CrossRef][PubMed]
    [Google Scholar]
  60. Justice SS, García-Lara J, Rothfield LI. Cell division inhibitors SulA and MinC/MinD block septum formation at different steps in the assembly of the Escherichia coli division machinery. Mol Microbiol 2000;37:410–423 [CrossRef][PubMed]
    [Google Scholar]
  61. Hager J, Staker BL, Bugl H, Jakob U. Active site in RrmJ, a heat shock-induced methyltransferase. J Biol Chem 2002;277:41978–41986 [CrossRef][PubMed]
    [Google Scholar]
  62. Nenninger AA, Robinson LS, Hammer ND, Epstein EA, Badtke MP et al. CsgE is a curli secretion specificity factor that prevents amyloid fibre aggregation. Mol Microbiol 2011;81:486–499 [CrossRef]
    [Google Scholar]
  63. Prigent-Combaret C, Brombacher E, Vidal O, Ambert A, Lejeune P et al. Complex regulatory network controls initial adhesion and biofilm formation in Escherichia coli via regulation of the csgD gene. J Bacteriol 2001;183:7213–7223 [CrossRef][PubMed]
    [Google Scholar]
  64. Michaux C, Verneuil N, Hartke A, Giard J-C. Physiological roles of small RNA molecules. Microbiology 2014;160:1007–1019 [CrossRef]
    [Google Scholar]
  65. Valgepea K, Adamberg K, Seiman A, Vilu R. Escherichia coli achieves faster growth by increasing catalytic and translation rates of proteins. Mol Biosyst 2013;9:2344–2358 [CrossRef]
    [Google Scholar]
  66. Komarova AV, Tchufistova LS, Dreyfus M, Boni IV. AU-rich sequences within 5' untranslated leaders enhance translation and stabilize mRNA in Escherichia coli. J Bacteriol 2005;187:1344–1349 [CrossRef][PubMed]
    [Google Scholar]
  67. Zhang J, Deutscher MP. A uridine-rich sequence required for translation of prokaryotic mRNA. Proc Natl Acad Sci USA 1992;89:2605–2609 [CrossRef][PubMed]
    [Google Scholar]
  68. Takahashi S, Furusawa H, Ueda T, Okahata Y. Translation enhancer improves the ribosome liberation from translation initiation. J Am Chem Soc 2013;135:13096–13106 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000619
Loading
/content/journal/micro/10.1099/mic.0.000619
Loading

Data & Media loading...

Supplements

Supplementary File 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error