1887

Abstract

Bacteria have evolved several strategies to survive a myriad of harmful conditions in the environment and in hosts. In Gram-negative bacteria, responses to nutrient limitation, oxidative or nitrosative stress, envelope stress, exposure to antimicrobials and other growth-limiting stresses have been linked to the development of antimicrobial resistance. This results from the activation of protective changes to cell physiology (decreased outer membrane permeability), resistance transporters (drug efflux pumps), resistant lifestyles (biofilms, persistence) and/or resistance mutations (target mutations, production of antibiotic modification/degradation enzymes). In targeting and interfering with essential physiological mechanisms, antimicrobials themselves are considered as stresses to which protective responses have also evolved. In this review, we focus on envelope stress responses that affect the expression of outer membrane porins and their impact on antimicrobial resistance. We also discuss evidences that indicate the role of antimicrobials as signaling molecules in activating envelope stress responses.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000613
2018-01-25
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/164/3/260.html?itemId=/content/journal/micro/10.1099/mic.0.000613&mimeType=html&fmt=ahah

References

  1. Stavenger RA, Winterhalter M. TRANSLOCATION project: how to get good drugs into bad bugs. Sci Transl Med 2014; 6: 228ed7 [CrossRef] [PubMed]
    [Google Scholar]
  2. Laxminarayan R, Matsoso P, Pant S, Brower C, Røttingen J-A et al. Access to effective antimicrobials: a worldwide challenge. The Lancet 2016; 387: 168– 175 [CrossRef]
    [Google Scholar]
  3. Nikaido H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 2003; 67: 593– 656 [CrossRef] [PubMed]
    [Google Scholar]
  4. Nikaido H, Pagès J-M. Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria. FEMS Microbiol Rev 2012; 36: 340– 363 [CrossRef]
    [Google Scholar]
  5. Silhavy TJ, Kahne D, Walker S. The bacterial cell envelope. Cold Spring Harb Perspect Biol 2010; 2: a000414 [CrossRef] [PubMed]
    [Google Scholar]
  6. Pagès J-M, James CE, Winterhalter M. The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria. Nat Rev Microbiol 2008; 6: 893– 903 [CrossRef]
    [Google Scholar]
  7. Davin-Regli A, Bolla J-M, James C, Lavigne J-P, Chevalier J et al. Membrane permeability and regulation of drug "influx and efflux" in enterobacterial pathogens. Curr Drug Targets 2008; 9: 750– 759 [CrossRef]
    [Google Scholar]
  8. Delcour AH. Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta 1794; 2009: 808– 816
    [Google Scholar]
  9. Masi M, Réfregiers M, Pos KM, Pagès J-M. Mechanisms of envelope permeability and antibiotic influx and efflux in Gram-negative bacteria. Nat Microbiol 2017; 2: 17001 [CrossRef]
    [Google Scholar]
  10. Nguyen TX, Alegre ER, Kelley ST. Phylogenetic analysis of general bacterial porins: a phylogenomic case study. J Mol Microbiol Biotechnol 2006; 11: 291– 301 [CrossRef] [PubMed]
    [Google Scholar]
  11. Masi M, Pagès JM. Structure, function and regulation of outer membrane proteins involved in drug transport in Enterobactericeae: the OmpF/C - TolC Case. Open Microbiol J 2013; 7: 22– 33 [CrossRef] [PubMed]
    [Google Scholar]
  12. Guillier M, Gottesman S, Storz G. Modulating the outer membrane with small RNAs. Genes Dev 2006; 20: 2338– 2348 [CrossRef]
    [Google Scholar]
  13. Vogel J, Papenfort K. Small non-coding RNAs and the bacterial outer membrane. Curr Opin Microbiol 2006; 9: 605– 611 [CrossRef]
    [Google Scholar]
  14. Valentin-Hansen P, Johansen J, Rasmussen AA. Small RNAs controlling outer membrane porins. Curr Opin Microbiol 2007; 10: 152– 155 [CrossRef]
    [Google Scholar]
  15. Andersson DI, Hughes D. Microbiological effects of sublethal levels of antibiotics. Nat Rev Microbiol 2014; 12: 465– 478 [CrossRef]
    [Google Scholar]
  16. Gullberg E, Cao S, Berg OG, Ilbäck C, Sandegren L et al. Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog 2011; 7: e1002158 [CrossRef] [PubMed]
    [Google Scholar]
  17. Gutierrez A, Laureti L, Crussard S, Abida H, Rodríguez-Rojas A et al. β-lactam antibiotics promote bacterial mutagenesis via an RpoS-mediated reduction in replication fidelity. Nat Commun 2013; 4: 1610 [CrossRef]
    [Google Scholar]
  18. Lee HH, Molla MN, Cantor CR, Collins JJ. Bacterial charity work leads to population-wide resistance. Nature 2010; 467: 82– 85 [CrossRef]
    [Google Scholar]
  19. Pu Y, Zhao Z, Li Y, Zou J, Ma Q et al. Enhanced efflux activity facilitates drug tolerance in dormant bacterial cells. Mol Cell 2016; 62: 284– 294 [CrossRef] [PubMed]
    [Google Scholar]
  20. Viveiros M, Jesus A, Brito M, Leandro C, Martins M et al. Inducement and reversal of tetracycline resistance in Escherichia coli K-12 and expression of proton gradient-dependent multidrug efflux pump genes. Antimicrob Agents Chemother 2005; 49: 3578– 3582 [CrossRef] [PubMed]
    [Google Scholar]
  21. Viveiros M, Dupont M, Rodrigues L, Couto I, Davin-Regli A et al. Antibiotic stress, genetic response and altered permeability of E. coli. PLoS One 2007; 2: e365 [CrossRef] [PubMed]
    [Google Scholar]
  22. Cohen SP, McMurry LM, Levy SB. marA locus causes decreased expression of OmpF porin in multiple-antibiotic-resistant (Mar) mutants of Escherichia coli. J Bacteriol 1988; 170: 5416– 5422 [CrossRef]
    [Google Scholar]
  23. George AM, Hall RM, Stokes HW. Multidrug resistance in Klebsiella pneumoniae: a novel gene, ramA, confers a multidrug resistance phenotype in Escherichia coli. Microbiology 1995; 141: 1909– 1920 [CrossRef]
    [Google Scholar]
  24. Chubiz LM, Rao CV. Role of the mar-sox-rob regulon in regulating outer membrane porin expression. J Bacteriol 2011; 193: 2252– 2260 [CrossRef] [PubMed]
    [Google Scholar]
  25. Chollet R, Bollet C, Chevalier J, Malléa M, Pagès JM et al. mar Operon involved in multidrug resistance of Enterobacter aerogenes. Antimicrob Agents Chemother 2002; 46: 1093– 1097 [CrossRef] [PubMed]
    [Google Scholar]
  26. Chollet R, Chevalier J, Bollet C, Pages JM, Davin-Regli A. RamA is an alternate activator of the multidrug resistance cascade in Enterobacter aerogenes. Antimicrob Agents Chemother 2004; 48: 2518– 2523 [CrossRef] [PubMed]
    [Google Scholar]
  27. Dupont M, E, Chollet R, Chevalier J, Pagès J-M. Enterobacter aerogenes OmpX, a cation-selective channel mar - and osmo-regulated. FEBS Lett 2004; 569: 27– 30 [CrossRef]
    [Google Scholar]
  28. Gayet S, Chollet R, Molle G, Pagès JM, Chevalier J. Modification of outer membrane protein profile and evidence suggesting an active drug pump in Enterobacter aerogenes clinical strains. Antimicrob Agents Chemother 2003; 47: 1555– 1559 [CrossRef] [PubMed]
    [Google Scholar]
  29. Dupont M, James CE, Chevalier J, Pagès JM. An early response to environmental stress involves regulation of OmpX and OmpF, two enterobacterial outer membrane pore-forming proteins. Antimicrob Agents Chemother 2007; 51: 3190– 3198 [CrossRef] [PubMed]
    [Google Scholar]
  30. Mecsas J, Welch R, Erickson JW, Gross CA. Identification and characterization of an outer membrane protein, OmpX, in Escherichia coli that is homologous to a family of outer membrane proteins including Ail of Yersinia enterocolitica. J Bacteriol 1995; 177: 799– 804 [CrossRef]
    [Google Scholar]
  31. Majdalani N, Gottesman S. The Rcs phosphorelay: a complex signal transduction system. Annu Rev Microbiol 2005; 59: 379– 405 [CrossRef] [PubMed]
    [Google Scholar]
  32. Ruiz N, Silhavy TJ. Sensing external stress: watchdogs of the Escherichia coli cell envelope. Curr Opin Microbiol 2005; 8: 122– 126 [CrossRef]
    [Google Scholar]
  33. Rowley G, Spector M, Kormanec J, Roberts M. Pushing the envelope: extracytoplasmic stress responses in bacterial pathogens. Nat Rev Microbiol 2006; 4: 383– 394 [CrossRef]
    [Google Scholar]
  34. Raivio TL. Everything old is new again: an update on current research on the Cpx envelope stress response. Biochim Biophys Acta 1843; 2014: 1529– 1541
    [Google Scholar]
  35. Hayden JD, Ades SE. The extracytoplasmic stress factor, σE, is required to maintain cell envelope integrity in Escherichia coli. PLoS One 2008; 3: e1573 [CrossRef] [PubMed]
    [Google Scholar]
  36. Delhaye A, Collet JF, Laloux G. Fine-Tuning of the Cpx envelope stress response is required for cell wall homeostasis in Escherichia coli. MBio 2016; 7: e00047-16 [CrossRef] [PubMed]
    [Google Scholar]
  37. de Las Peñas A, Connolly L, Gross CA. SigmaE is an essential sigma factor in Escherichia coli. J Bacteriol 1997; 179: 6862– 6864 [CrossRef]
    [Google Scholar]
  38. Wassarman KM, Kiley PJ. Global approaches for finding small RNA and small open reading frame functions. J Bacteriol 2010; 192: 26– 28 [CrossRef] [PubMed]
    [Google Scholar]
  39. Gottesman S. The small RNA regulators of Escherichia coli: roles and mechanisms. Annu Rev Microbiol 2004; 58: 303– 328 [CrossRef] [PubMed]
    [Google Scholar]
  40. Thompson KM, Rhodius VA, Gottesman S. SigmaE regulates and is regulated by a small RNA in Escherichia coli. J Bacteriol 2007; 189: 4243– 4256 [CrossRef] [PubMed]
    [Google Scholar]
  41. Vogt SL, Evans AD, Guest RL, Raivio TL. The Cpx envelope stress response regulates and is regulated by small noncoding RNAs. J Bacteriol 2014; 196: 4229– 4238 [CrossRef] [PubMed]
    [Google Scholar]
  42. Mizuno T, Mizushima S. Signal transduction and gene regulation through the phosphorylation of two regulatory components: the molecular basis for the osmotic regulation of the porin genes. Mol Microbiol 1990; 4: 1077– 1082 [CrossRef]
    [Google Scholar]
  43. Pratt LA, Hsing W, Gibson KE, Silhavy TJ. From acids to osmZ: multiple factors influence synthesis of the OmpF and OmpC porins in Escherichia coli. Mol Microbiol 1996; 20: 911– 917 [CrossRef]
    [Google Scholar]
  44. Cai SJ, Inouye M. EnvZ-OmpR interaction and osmoregulation in Escherichia coli. J Biol Chem 2002; 277: 24155– 24161 [CrossRef] [PubMed]
    [Google Scholar]
  45. Price NL, Raivio TL. Characterization of the Cpx regulon in Escherichia coli strain MC4100. J Bacteriol 2009; 191: 1798– 1815 [CrossRef] [PubMed]
    [Google Scholar]
  46. Raivio TL, Leblanc SK, Price NL. The Escherichia coli Cpx envelope stress response regulates genes of diverse function that impact antibiotic resistance and membrane integrity. J Bacteriol 2013; 195: 2755– 2767 [CrossRef] [PubMed]
    [Google Scholar]
  47. Guest RL, Wang J, Wong JL, Raivio TL. A bacterial stress response regulates respiratory protein complexes to control envelope stress adaptation. J Bacteriol 2017; 199: e00153-17 [CrossRef] [PubMed]
    [Google Scholar]
  48. Dartigalongue C, Missiakas D, Raina S. Characterization of the Escherichia coli sigma E regulon. J Biol Chem 2001; 276: 20866– 20875 [CrossRef] [PubMed]
    [Google Scholar]
  49. Guest RL, Raivio TL. Role of the Gram-negative envelope stress response in the presence of antimicrobial agents. Trends Microbiol 2016; 24: 377– 390 [CrossRef] [PubMed]
    [Google Scholar]
  50. Mahoney TF, Silhavy TJ. The Cpx stress response confers resistance to some, but not all, bactericidal antibiotics. J Bacteriol 2013; 195: 1869– 1874 [CrossRef] [PubMed]
    [Google Scholar]
  51. Moreau PL. Protective role of the RpoE (σE) and Cpx envelope stress responses against gentamicin killing of nongrowing Escherichia coli incubated under aerobic, phosphate starvation conditions. FEMS Microbiol Lett 2014; 357: 151– 156
    [Google Scholar]
  52. Batchelor E, Walthers D, Kenney LJ, Goulian M. The Escherichia coli CpxA-CpxR envelope stress response system regulates expression of the porins ompF and ompC. J Bacteriol 2005; 187: 5723– 5731 [CrossRef] [PubMed]
    [Google Scholar]
  53. Gerken H, Charlson ES, Cicirelli EM, Kenney LJ, Misra R. MzrA: a novel modulator of the EnvZ/OmpR two-component regulon. Mol Microbiol 2009; 72: 1408– 1422 [CrossRef]
    [Google Scholar]
  54. Gerken H, Misra R. MzrA-EnvZ interactions in the periplasm influence the EnvZ/OmpR two-component regulon. J Bacteriol 2010; 192: 6271– 6278 [CrossRef] [PubMed]
    [Google Scholar]
  55. Philippe N, Maigre L, Santini S, Pinet E, Claverie JM et al. In vivo evolution of bacterial resistance in two cases of Enterobacter aerogenes infections during treatment with imipenem. PLoS One 2015; 10: e0138828 [CrossRef] [PubMed]
    [Google Scholar]
  56. Mecsas J, Rouviere PE, Erickson JW, Donohue TJ, Gross CA. The activity of sigma E, an Escherichia coli heat-inducible sigma-factor, is modulated by expression of outer membrane proteins. Genes Dev 1993; 7: 2618– 2628 [CrossRef]
    [Google Scholar]
  57. Missiakas D, Mayer MP, Lemaire M, Georgopoulos C, Raina S. Modulation of the Escherichia coli sigmaE (RpoE) heat-shock transcription-factor activity by the RseA, RseB and RseC proteins. Mol Microbiol 1997; 24: 355– 371 [CrossRef]
    [Google Scholar]
  58. Rhodius VA, Suh WC, Nonaka G, West J, Gross CA. Conserved and variable functions of the sigmaE stress response in related genomes. PLoS Biol 2006; 4: e2 [CrossRef] [PubMed]
    [Google Scholar]
  59. Noor R, Murata M, Nagamitsu H, Klein G, Raina S et al. Dissection of sigma(E)-dependent cell lysis in Escherichia coli: roles of RpoE regulators RseA, RseB and periplasmic folding catalyst PpiD. Genes Cells 2009; 14: 885– 899 [CrossRef] [PubMed]
    [Google Scholar]
  60. Gogol EB, Rhodius VA, Papenfort K, Vogel J, Gross CA. Small RNAs endow a transcriptional activator with essential repressor functions for single-tier control of a global stress regulon. Proc Natl Acad Sci USA 2011; 108: 12875– 12880 [CrossRef] [PubMed]
    [Google Scholar]
  61. Klein G, Lindner B, Brade H, Raina S. Molecular basis of lipopolysaccharide heterogeneity in Escherichia coli: envelope stress-responsive regulators control the incorporation of glycoforms with a third 3-deoxy-α-D-manno-oct-2-ulosonic acid and rhamnose. J Biol Chem 2011; 286: 42787– 42807 [Crossref]
    [Google Scholar]
  62. Klein G, Kobylak N, Lindner B, Stupak A, Raina S. Assembly of lipopolysaccharide in Escherichia coli requires the essential LapB heat shock protein. J Biol Chem 2014; 289: 14829– 14853 [CrossRef] [PubMed]
    [Google Scholar]
  63. Guo MS, Updegrove TB, Gogol EB, Shabalina SA, Gross CA et al. MicL, a new σE-dependent sRNA, combats envelope stress by repressing synthesis of Lpp, the major outer membrane lipoprotein. Genes Dev 2014; 28: 1620– 1634 [CrossRef] [PubMed]
    [Google Scholar]
  64. Klein G, Stupak A, Biernacka D, Wojtkiewicz P, Lindner B et al. Multiple transcriptional factors regulate transcription of the rpoE gene in Escherichia coli under different growth conditions and when the lipopolysaccharide biosynthesis is defective. J Biol Chem 2016; 291: 22999– 23019 [CrossRef] [PubMed]
    [Google Scholar]
  65. Ades SE. Regulation by destruction: design of the σE envelope stress response. Curr Opin Microbiol 2008; 11: 535– 540 [CrossRef]
    [Google Scholar]
  66. Walsh NP, Alba BM, Bose B, Gross CA, Sauer RT. OMP peptide signals initiate the envelope-stress response by activating DegS protease via relief of inhibition mediated by its PDZ domain. Cell 2003; 113: 61– 71 [CrossRef] [PubMed]
    [Google Scholar]
  67. Lima S, Guo MS, Chaba R, Gross CA, Sauer RT. Dual molecular signals mediate the bacterial response to outer-membrane stress. Science 2013; 340: 837– 841 [CrossRef]
    [Google Scholar]
  68. Mizuno T, Chou MY, Inouye M. A unique mechanism regulating gene expression: translational inhibition by a complementary RNA transcript (micRNA). Proc Natl Acad Sci USA 1984; 81: 1966– 1970 [CrossRef] [PubMed]
    [Google Scholar]
  69. Delihas N. Discovery and characterization of the first non-coding RNA that regulates gene expression, micF RNA: a historical perspective. World J Biol Chem 2015; 6: 272– 280 [CrossRef]
    [Google Scholar]
  70. Inouye M. The first demonstration of RNA interference to inhibit mRNA function. Gene 2016; 592: 332– 333 [CrossRef]
    [Google Scholar]
  71. Andersen J, Delihas N. micF RNA binds to the 5' end of ompF mRNA and to a protein from Escherichia coli. Biochemistry 1990; 29: 9249– 9256 [CrossRef]
    [Google Scholar]
  72. Delihas N, Forst S. MicF: an antisense RNA gene involved in response of Escherichia coli to global stress factors. J Mol Biol 2001; 313: 1– 12 [CrossRef] [PubMed]
    [Google Scholar]
  73. Ramani N, Hedeshian M, Freundlich M. micF antisense RNA has a major role in osmoregulation of OmpF in Escherichia coli. J Bacteriol 1994; 176: 5005– 5010 [CrossRef]
    [Google Scholar]
  74. Chou JH, Greenberg JT, Demple B. Posttranscriptional repression of Escherichia coli OmpF protein in response to redox stress: positive control of the micF antisense RNA by the soxRS locus. J Bacteriol 1993; 175: 1026– 1031 [CrossRef]
    [Google Scholar]
  75. Chen S, Zhang A, Blyn LB, Storz G. MicC, a second small-RNA regulator of Omp protein expression in Escherichia coli. J Bacteriol 2004; 186: 6689– 6697 [CrossRef] [PubMed]
    [Google Scholar]
  76. Prilipov A, Phale PS, Koebnik R, Widmer C, Rosenbusch JP. Identification and characterization of two quiescent porin genes, nmpC and ompN, in Escherichia coli BE. J Bacteriol 1998; 180: 3388– 3392
    [Google Scholar]
  77. Dam S, Pagès JM, Masi M. Dual regulation of the small RNA MicC and the quiescent porin OmpN in response to antibiotic stress in Escherichia coli. Antibiotics 2017; 6: 33 [CrossRef] [PubMed]
    [Google Scholar]
  78. Guillier M, Gottesman S. Remodelling of the Escherichia coli outer membrane by two small regulatory RNAs. Mol Microbiol 2006; 59: 231– 247 [CrossRef]
    [Google Scholar]
  79. Guillier M, Gottesman S. The 5′ end of two redundant sRNAs is involved in the regulation of multiple targets, including their own regulator. Nucleic Acids Res 2008; 36: 6781– 6794 [CrossRef]
    [Google Scholar]
  80. Rasmussen AA, Eriksen M, Gilany K, Udesen C, Franch T et al. Regulation of ompA mRNA stability: the role of a small regulatory RNA in growth phase-dependent control. Mol Microbiol 2005; 58: 1421– 1429 [CrossRef]
    [Google Scholar]
  81. Johansen J, Rasmussen AA, Overgaard M, Valentin-Hansen P. Conserved small non-coding RNAs that belong to the sigmaE regulon: role in down-regulation of outer membrane proteins. J Mol Biol 2006; 364: 1– 8 [CrossRef] [PubMed]
    [Google Scholar]
  82. Skovierova H, Rowley G, Rezuchova B, Homerova D, Lewis C et al. Identification of the sigmaE regulon of Salmonella enterica serovar Typhimurium. Microbiology 2006; 152: 1347– 1359 [CrossRef] [PubMed]
    [Google Scholar]
  83. Douchin V, Bohn C, Bouloc P. Down-regulation of porins by a small RNA bypasses the essentiality of the regulated intramembrane proteolysis protease RseP in Escherichia coli. J Biol Chem 2006; 281: 12253– 12259 [CrossRef] [PubMed]
    [Google Scholar]
  84. Papenfort K, Pfeiffer V, Mika F, Lucchini S, Hinton JC et al. SigmaE-dependent small RNAs of Salmonella respond to membrane stress by accelerating global omp mRNA decay. Mol Microbiol 2006; 62: 1674– 1688 [CrossRef] [PubMed]
    [Google Scholar]
  85. Bossi L, Figueroa-Bossi N. A small RNA downregulates LamB maltoporin in Salmonella. Mol Microbiol 2007; 65: 799– 810 [CrossRef] [PubMed]
    [Google Scholar]
  86. Udekwu KI, Wagner EGH. Sigma E controls biogenesis of the antisense RNA MicA. Nucleic Acids Res 2007; 35: 1279– 1288 [CrossRef]
    [Google Scholar]
  87. Johansen J, Eriksen M, Kallipolitis B, Valentin-Hansen P. Down-regulation of outer membrane proteins by noncoding RNAs: unraveling the cAMP-CRP- and sigmaE-dependent CyaR-ompX regulatory case. J Mol Biol 2008; 383: 1– 9 [CrossRef] [PubMed]
    [Google Scholar]
  88. Doménech-Sánchez A, Hernández-Allés S, Martínez-Martínez L, Benedí VJ, Albertí S. Identification and characterization of a new porin gene of Klebsiella pneumoniae: its role in beta-lactam antibiotic resistance. J Bacteriol 1999; 181: 2726– 2732
    [Google Scholar]
  89. Knopp M, Andersson DI. Amelioration of the fitness costs of antibiotic resistance due to reduced outer membrane permeability by upregulation of alternative porins. Mol Biol Evol 2015; 32: 3252– 3263
    [Google Scholar]
  90. Pomposiello PJ, Bennik MH, Demple B. Genome-wide transcriptional profiling of the Escherichia coli responses to superoxide stress and sodium salicylate. J Bacteriol 2001; 183: 3890– 3902 [CrossRef] [PubMed]
    [Google Scholar]
  91. Bornet C, Davin-Régli A, Bosi C, Pagès JM, Bollet C. Imipenem resistance of Enterobacter aerogenes mediated by outer membrane permeability. J Clin Microbiol 2000; 38: 1048– 1052
    [Google Scholar]
  92. Bornet C, Chollet R, Malléa M, Chevalier J, Davin-Regli A et al. Imipenem and expression of multidrug efflux pump in Enterobacter aerogenes. Biochem Biophys Res Commun 2003; 301: 985– 990 [CrossRef]
    [Google Scholar]
  93. Thiolas A, Bornet C, Davin-Régli A, Pagès J-M, Bollet C. Resistance to imipenem, cefepime, and cefpirome associated with mutation in Omp36 osmoporin of Enterobacter aerogenes. Biochem Biophys Res Commun 2004; 317: 851– 856 [CrossRef]
    [Google Scholar]
  94. Thiolas A, Bollet C, La Scola B, Raoult D, Pagès JM. Successive emergence of Enterobacter aerogenes strains resistant to imipenem and colistin in a patient. Antimicrob Agents Chemother 2005; 49: 1354– 1358 [CrossRef] [PubMed]
    [Google Scholar]
  95. Lavigne J-P, Sotto A, Nicolas-Chanoine M-H, Bouziges N, Pagès J-M et al. An adaptive response of Enterobacter aerogenes to imipenem: regulation of porin balance in clinical isolates. Int J Antimicrob Agents 2013; 41: 130– 136 [CrossRef]
    [Google Scholar]
  96. Pavez M, Vieira C, de Araujo MR, Cerda A, de Almeida LM et al. Molecular mechanisms of membrane impermeability in clinical isolates of Enterobacteriaceae exposed to imipenem selective pressure. Int J Antimicrob Agents 2016; 48: 78– 85 [CrossRef]
    [Google Scholar]
  97. Cowan SW, Schirmer T, Rummel G, Steiert M, Ghosh R et al. Crystal structures explain functional properties of two E. coli porins. Nature 1992; 358: 727– 733 [CrossRef]
    [Google Scholar]
  98. Baslé A, Rummel G, Storici P, Rosenbusch JP, Schirmer T. Crystal structure of osmoporin OmpC from E. coli at 2.0 A. J Mol Biol 2006; 362: 933– 942 [CrossRef] [PubMed]
    [Google Scholar]
  99. Nikaido H, Rosenberg EY. Porin channels in Escherichia coli: studies with liposomes reconstituted from purified proteins. J Bacteriol 1983; 153: 241– 252
    [Google Scholar]
  100. Nikaido H, Rosenberg EY, Foulds J. Porin channels in Escherichia coli: studies with beta-lactams in intact cells. J Bacteriol 1983; 153: 232– 240 [PubMed]
    [Google Scholar]
  101. Kojima S, Nikaido H. High salt concentrations increase permeability through OmpC channels of Escherichia coli. J Biol Chem 2014; 289: 26464– 26473 [CrossRef] [PubMed]
    [Google Scholar]
  102. E, Baslé A, Jaquinod M, Saint N, Malléa M et al. A new mechanism of antibiotic resistance in Enterobacteriaceae induced by a structural modification of the major porin. Mol Microbiol 2001; 41: 189– 198 [CrossRef] [PubMed]
    [Google Scholar]
  103. Simonet V, Malléa M, Pagès JM. Substitutions in the eyelet region disrupt cefepime diffusion through the Escherichia coli OmpF channel. Antimicrob Agents Chemother 2000; 44: 311– 315 [CrossRef] [PubMed]
    [Google Scholar]
  104. Low AS, MacKenzie FM, Gould IM, Booth IR. Protected environments allow parallel evolution of a bacterial pathogen in a patient subjected to long-term antibiotic therapy. Mol Microbiol 2001; 42: 619– 630 [CrossRef] [PubMed]
    [Google Scholar]
  105. Lou H, Chen M, Black SS, Bushell SR, Ceccarelli M et al. Altered antibiotic transport in OmpC mutants isolated from a series of clinical strains of multi-drug resistant E. coli. PLoS One 2011; 6: e25825 [CrossRef] [PubMed]
    [Google Scholar]
  106. El-Mowafi SA, Alumasa JN, Ades SE, Keiler KC. Cell-based assay to identify inhibitors of the Hfq-sRNA regulatory pathway. Antimicrob Agents Chemother 2014; 58: 5500– 5509 [CrossRef] [PubMed]
    [Google Scholar]
  107. Childs-Disney JL, Disney MD. Small molecule targeting of a microRNA associated with hepatocellular carcinoma. ACS Chem Biol 2016; 11: 375– 380 [CrossRef] [PubMed]
    [Google Scholar]
  108. Castillo-Keller M, Vuong P, Misra R. Novel mechanism of Escherichia coli porin regulation. J Bacteriol 2006; 188: 576– 586 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000613
Loading
/content/journal/micro/10.1099/mic.0.000613
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error