1887

Abstract

DNases are abundant among the pathogenic streptococci, with most species harbouring genes for at least one. Despite their prevalence, however, the role for these extracellular enzymes is still relatively unclear. The DNases of the Lancefield group A Streptococcus, S. pyogenes are the best characterized, with a total of eight DNase genes identified so far. Six are known to be associated with integrated prophages. Two are chromosomally encoded, and one of these is cell-wall anchored. Homologues of both prophage-associated and chromosomally encoded S. pyogenes DNases have been identified in other streptococcal species, as well as other unique DNases. A major role identified for streptococcal DNases appears to be in the destruction of extracellular traps produced by immune cells, such as neutrophils, to ensnare bacteria and kill them. These traps are composed primarily of DNA which can be degraded by the secreted and cell-wall-anchored streptococcal DNases. DNases can also reduce TLR-9 signalling to dampen the immune response and produce cytotoxic deoxyadenosine to limit phagocytosis. Upper respiratory tract infection models of S. pyogenes have identified a role for DNases in potentiating infection and transmission, possibly by limiting the immune response or through some other unknown mechanism. Streptococcal DNases may also be involved in interacting with other microbial communities through communication, bacterial killing and disruption of competitive biofilms, or control of their own biofilm production. The contribution of DNases to pathogenesis may therefore be wide ranging and extend beyond direct interference with the host immune response.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000612
2018-01-25
2019-08-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/164/3/242.html?itemId=/content/journal/micro/10.1099/mic.0.000612&mimeType=html&fmt=ahah

References

  1. Berends ET, Horswill AR, Haste NM, Monestier M, Nizet V et al. Nuclease expression by Staphylococcus aureus facilitates escape from neutrophil extracellular traps. J Innate Immun 2010;2:576–586 [CrossRef][PubMed]
    [Google Scholar]
  2. Sumby P, Barbian KD, Gardner DJ, Whitney AR, Welty DM et al. Extracellular deoxyribonuclease made by group A Streptococcus assists pathogenesis by enhancing evasion of the innate immune response. Proc Natl Acad Sci USA 2005;102:1679–1684 [CrossRef][PubMed]
    [Google Scholar]
  3. Kim JM, Choe MH, Asaithambi K, Song JY, Lee YS et al. Helicobacter pylori HP0425 targets the nucleus with DNase I-like activity. Helicobacter 2016;21:218–225 [CrossRef][PubMed]
    [Google Scholar]
  4. Weinrauch Y, Drujan D, Shapiro SD, Weiss J, Zychlinsky A. Neutrophil elastase targets virulence factors of enterobacteria. Nature 2002;417:91–94 [CrossRef][PubMed]
    [Google Scholar]
  5. Sánchez M, Colom F. Extracellular DNase activity of Cryptococcus neoformans and Cryptococcus gattii. Rev Iberoam Micol 2010;27:10–13 [CrossRef][PubMed]
    [Google Scholar]
  6. Genton B, Reed ZH. Asexual blood-stage malaria vaccine development: facing the challenges. Curr Opin Infect Dis 2007;20:467–475 [CrossRef][PubMed]
    [Google Scholar]
  7. de Paula Menezes R, de Melo Riceto ÉB, Borges AS, de Brito Röder DV, dos Santos Pedroso R. Evaluation of virulence factors of Candida albicans isolated from HIV-positive individuals using HAART. Arch Oral Biol 2016;66:61–65 [CrossRef][PubMed]
    [Google Scholar]
  8. Facklam R. What happened to the streptococci: overview of taxonomic and nomenclature changes. Clin Microbiol Rev 2002;15:613–630 [CrossRef][PubMed]
    [Google Scholar]
  9. Carapetis JR, Steer AC, Mulholland EK, Weber M. The global burden of group A streptococcal diseases. Lancet Infect Dis 2005;5:685–694 [CrossRef][PubMed]
    [Google Scholar]
  10. Walker MJ, Barnett TC, McArthur JD, Cole JN, Gillen CM et al. Disease manifestations and pathogenic mechanisms of Group A Streptococcus. Clin Microbiol Rev 2014;27:264–301 [CrossRef][PubMed]
    [Google Scholar]
  11. Cunningham MW. Pathogenesis of group A streptococcal infections. Clin Microbiol Rev 2000;13:470–511 [CrossRef][PubMed]
    [Google Scholar]
  12. Melin P. Neonatal group B streptococcal disease: from pathogenesis to preventive strategies. Clin Microbiol Infect 2011;17:1294–1303 [CrossRef][PubMed]
    [Google Scholar]
  13. Brandt CM, Spellerberg B. Human infections due to Streptococcus dysgalactiae subspecies equisimilis. Clin Infect Dis 2009;49:766–772 [CrossRef][PubMed]
    [Google Scholar]
  14. Holden MT, Heather Z, Paillot R, Steward KF, Webb K et al. Genomic evidence for the evolution of Streptococcus equi: host restriction, increased virulence, and genetic exchange with human pathogens. PLoS Pathog 2009;5:e1000346 [CrossRef][PubMed]
    [Google Scholar]
  15. Shulman ST, Ayoub EM, Victorica BE, Gessner IH, Tamer DF et al. Differences in antibody response to streptococcal antigens in children with rheumatic and non-rheumatic mitral valve disease. Circulation 1974;50:1244–1251 [CrossRef][PubMed]
    [Google Scholar]
  16. Kaplan EL, Anthony BF, Chapman SS, Ayoub EM, Wannamaker LW. The influence of the site of infection on the immune response to group A streptococci. J Clin Invest 1970;49:1405–1414 [CrossRef][PubMed]
    [Google Scholar]
  17. Sriskandan S, Unnikrishnan M, Krausz T, Cohen J. Mitogenic factor (MF) is the major DNase of serotype M89 Streptococcus pyogenes. Microbiology 2000;146:2785–2792 [CrossRef][PubMed]
    [Google Scholar]
  18. Matsumoto M, Sakae K, Hashikawa S, Torii K, Hasegawa T et al. Close correlation of streptococcal DNase B (sdaB) alleles with emm genotypes in Streptococcus pyogenes. Microbiol Immunol 2005;49:925–929 [CrossRef][PubMed]
    [Google Scholar]
  19. Hasegawa T, Minami M, Okamoto A, Tatsuno I, Isaka M et al. Characterization of a virulence-associated and cell-wall-located DNase of Streptococcus pyogenes. Microbiology 2010;156:184–190 [CrossRef][PubMed]
    [Google Scholar]
  20. Banks DJ, Beres SB, Musser JM. The fundamental contribution of phages to GAS evolution, genome diversification and strain emergence. Trends Microbiol 2002;10:515–521 [CrossRef][PubMed]
    [Google Scholar]
  21. Beres SB, Musser JM. Contribution of exogenous genetic elements to the group A Streptococcus metagenome. PLoS One 2007;2:e800 [CrossRef][PubMed]
    [Google Scholar]
  22. Commons RJ, Smeesters PR, Proft T, Fraser JD, Robins-Browne R et al. Streptococcal superantigens: categorization and clinical associations. Trends Mol Med 2014;20:48–62 [CrossRef][PubMed]
    [Google Scholar]
  23. Beres SB, Kachroo P, Nasser W, Olsen RJ, Zhu L et al. Transcriptome remodeling contributes to epidemic disease caused by the human pathogen Streptococcus pyogenes. MBio 2016;7:e00403-16 [CrossRef][PubMed]
    [Google Scholar]
  24. Turner CE, Abbott J, Lamagni T, Holden MT, David S et al. Emergence of a new highly successful acapsular group A Streptococcus clade of genotype emm89 in the United Kingdom. mBio 2015;6:e00622-15 [CrossRef][PubMed]
    [Google Scholar]
  25. Beres SB, Sesso R, Pinto SW, Hoe NP, Porcella SF et al. Genome sequence of a Lancefield group C Streptococcus zooepidemicus strain causing epidemic nephritis: new information about an old disease. PLoS One 2008;3:e3026 [CrossRef][PubMed]
    [Google Scholar]
  26. Ma F, Guo X, Fan H. Extracellular nucleases of Streptococcus equi subsp. zooepidemicus degrade neutrophil extracellular traps and impair macrophage activity of the host. Appl Environ Microbiol 2017;83:e02468-16 [CrossRef][PubMed]
    [Google Scholar]
  27. Haas B, Bonifait L, Vaillancourt K, Charette SJ, Gottschalk M et al. Characterization of DNase activity and gene in Streptococcus suis and evidence for a role as virulence factor. BMC Res Notes 2014;7:424 [CrossRef][PubMed]
    [Google Scholar]
  28. de Buhr N, Neumann A, Jerjomiceva N, von Köckritz-Blickwede M, Baums CG. Streptococcus suis DNase SsnA contributes to degradation of neutrophil extracellular traps (NETs) and evasion of NET-mediated antimicrobial activity. Microbiology 2014;160:385–395 [CrossRef][PubMed]
    [Google Scholar]
  29. de Buhr N, Stehr M, Neumann A, Naim HY, Valentin-Weigand P et al. Identification of a novel DNase of Streptococcus suis (EndAsuis) important for neutrophil extracellular trap degradation during exponential growth. Microbiology 2015;161:838–850 [CrossRef][PubMed]
    [Google Scholar]
  30. Derré-Bobillot A, Cortes-Perez NG, Yamamoto Y, Kharrat P, Couvé E et al. Nuclease A (Gbs0661), an extracellular nuclease of Streptococcus agalactiae, attacks the neutrophil extracellular traps and is needed for full virulence. Mol Microbiol 2013;89:518–531 [CrossRef][PubMed]
    [Google Scholar]
  31. Suzuki H, Lefébure T, Hubisz MJ, Pavinski Bitar P, Lang P et al. Comparative genomic analysis of the Streptococcus dysgalactiae species group: gene content, molecular adaptation, and promoter evolution. Genome Biol Evol 2011;3:168–185 [CrossRef][PubMed]
    [Google Scholar]
  32. Watanabe S, Kirikae T, Miyoshi-Akiyama T. Complete genome sequence of Streptococcus dysgalactiae subsp. equisimilis 167 carrying Lancefield group C antigen and comparative genomics of S. dysgalactiae subsp. equisimilis strains. Genome Biol Evol 2013;5:1644–1651 [CrossRef][PubMed]
    [Google Scholar]
  33. Sherry S, Johnson A, Tillett WS. The action of streptococcal desoxyribose nuclease (streptodornase)in vitro and on purulent pleural exudations of patients. J Clin Invest 1949;28:1094–1104 [CrossRef][PubMed]
    [Google Scholar]
  34. Broudy TB, Pancholi V, Fischetti VA. The in vitro interaction of Streptococcus pyogenes with human pharyngeal cells induces a phage-encoded extracellular DNase. Infect Immun 2002;70:2805–2811 [CrossRef][PubMed]
    [Google Scholar]
  35. Buchanan JT, Simpson AJ, Aziz RK, Liu GY, Kristian SA et al. DNase expression allows the pathogen group A Streptococcus to escape killing in neutrophil extracellular traps. Curr Biol 2006;16:396–400 [CrossRef][PubMed]
    [Google Scholar]
  36. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y et al. Neutrophil extracellular traps kill bacteria. Science 2004;303:1532–1535 [CrossRef][PubMed]
    [Google Scholar]
  37. von Köckritz-Blickwede M, Goldmann O, Thulin P, Heinemann K, Norrby-Teglund A et al. Phagocytosis-independent antimicrobial activity of mast cells by means of extracellular trap formation. Blood 2008;111:3070–3080 [CrossRef][PubMed]
    [Google Scholar]
  38. Yousefi S, Gold JA, Andina N, Lee JJ, Kelly AM et al. Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat Med 2008;14:949–953 [CrossRef][PubMed]
    [Google Scholar]
  39. von Köckritz-Blickwede M, Nizet V. Innate immunity turned inside-out: antimicrobial defense by phagocyte extracellular traps. J Mol Med 2009;87:775–783 [CrossRef][PubMed]
    [Google Scholar]
  40. Fontaine MC, Perez-Casal J, Willson PJ. Investigation of a novel DNase of Streptococcus suis serotype 2. Infect Immun 2004;72:774–781 [CrossRef][PubMed]
    [Google Scholar]
  41. Chang A, Khemlani A, Kang H, Proft T. Functional analysis of Streptococcus pyogenes nuclease A (SpnA), a novel group A streptococcal virulence factor. Mol Microbiol 2011;79:1629–1642 [CrossRef][PubMed]
    [Google Scholar]
  42. Morita C, Sumioka R, Nakata M, Okahashi N, Wada S et al. Cell wall-anchored nuclease of Streptococcus sanguinis contributes to escape from neutrophil extracellular trap-mediated bacteriocidal activity. PLoS One 2014;9:e103125 [CrossRef][PubMed]
    [Google Scholar]
  43. Beiter K, Wartha F, Albiger B, Normark S, Zychlinsky A et al. An endonuclease allows Streptococcus pneumoniae to escape from neutrophil extracellular traps. Curr Biol 2006;16:401–407 [CrossRef][PubMed]
    [Google Scholar]
  44. Chalmers C, Khemlani AHJ, Sohn CR, Loh JMS, Tsai CJ et al. Streptococcus pyogenes nuclease A (SpnA) mediated virulence does not exclusively depend on nuclease activity. J Microbiol Immunol Infect 2017; [CrossRef][PubMed]
    [Google Scholar]
  45. Uchiyama S, Andreoni F, Schuepbach RA, Nizet V, Zinkernagel AS. DNase Sda1 allows invasive M1T1 Group A Streptococcus to prevent TLR9-dependent recognition. PLoS Pathog 2012;8:e1002736 [CrossRef][PubMed]
    [Google Scholar]
  46. Zheng L, Khemlani A, Lorenz N, Loh JM, Langley RJ et al. Streptococcal 5'-nucleotidase A (S5nA), a novel Streptococcus pyogenes virulence factor that facilitates immune evasion. J Biol Chem 2015;290:31126–31137 [CrossRef][PubMed]
    [Google Scholar]
  47. Wilson AT. Loss of group carbohydrate during mouse passages of a group a hemolytic Streptococcus. J Exp Med 1945;81:593–596 [CrossRef][PubMed]
    [Google Scholar]
  48. Afshar B, Turner CE, Lamagni TL, Smith KC, Al-Shahib A et al. Enhanced nasopharyngeal infection and shedding associated with an epidemic lineage of emm3 group A Streptococcus. Virulence 2017;8:1390–1400 [CrossRef][PubMed]
    [Google Scholar]
  49. Al-Shahib A, Underwood A, Afshar B, Turner CE, Lamagni T et al. Emergence of a novel lineage containing a prophage in emm/M3 group A Streptococcus associated with upsurge in invasive disease in the UK. Microb Genom 2016;2:e000059 [CrossRef][PubMed]
    [Google Scholar]
  50. Korczynska JE, Turkenburg JP, Taylor EJ. The structural characterization of a prophage-encoded extracellular DNase from Streptococcus pyogenes. Nucleic Acids Res 2012;40:928–938 [CrossRef][PubMed]
    [Google Scholar]
  51. Harder J, Schroder JM. RNase 7, a novel innate immune defense antimicrobial protein of healthy human skin. J Biol Chem 2002;277:46779–46784 [CrossRef][PubMed]
    [Google Scholar]
  52. Rosenberg HF. RNase A ribonucleases and host defense: an evolving story. J Leukoc Biol 2008;83:1079–1087 [CrossRef][PubMed]
    [Google Scholar]
  53. Torrent M, Badia M, Moussaoui M, Sanchez D, Nogués MV et al. Comparison of human RNase 3 and RNase 7 bactericidal action at the Gram-negative and Gram-positive bacterial cell wall. FEBS J 2010;277:1713–1725 [CrossRef][PubMed]
    [Google Scholar]
  54. Makarov AA, Ilinskaya ON. Cytotoxic ribonucleases: molecular weapons and their targets. FEBS Lett 2003;540:15–20 [CrossRef][PubMed]
    [Google Scholar]
  55. Batot G, Michalska K, Ekberg G, Irimpan EM, Joachimiak G et al. The CDI toxin of Yersinia kristensenii is a novel bacterial member of the RNase A superfamily. Nucleic Acids Res 2017;45:5013–5025 [CrossRef][PubMed]
    [Google Scholar]
  56. Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS. Extracellular DNA required for bacterial biofilm formation. Science 2002;295:1487 [CrossRef][PubMed]
    [Google Scholar]
  57. Zhu L, Kuang Z, Wilson BA, Lau GW. Competence-independent activity of pneumococcal EndA mediates degradation of extracellular DNA and NETs and is important for virulence. PLoS One 2013;8:e70363 [CrossRef][PubMed]
    [Google Scholar]
  58. Lacks S, Greenberg B. A deoxyribonuclease of Diplococcus pneumoniae specific for methylated DNA. J Biol Chem 1975;250:4060–4066[PubMed]
    [Google Scholar]
  59. Venturini C, Ong CL, Gillen CM, Ben-Zakour NL, Maamary PG et al. Acquisition of the Sda1-encoding bacteriophage does not enhance virulence of the serotype M1 Streptococcus pyogenes strain SF370. Infect Immun 2013;81:2062–2069 [CrossRef][PubMed]
    [Google Scholar]
  60. Sumby P, Whitney AR, Graviss EA, Deleo FR, Musser JM. Genome-wide analysis of group a streptococci reveals a mutation that modulates global phenotype and disease specificity. PLoS Pathog 2006;2:e5 [CrossRef][PubMed]
    [Google Scholar]
  61. Anbalagan S, Chaussee MS. Transcriptional regulation of a bacteriophage encoded extracellular DNase (Spd-3) by Rgg in Streptococcus pyogenes. PLoS One 2013;8:e61312 [CrossRef][PubMed]
    [Google Scholar]
  62. Voyich JM, Sturdevant DE, Braughton KR, Kobayashi SD, Lei B et al. Genome-wide protective response used by group A Streptococcus to evade destruction by human polymorphonuclear leukocytes. Proc Natl Acad Sci USA 2003;100:1996–2001 [CrossRef][PubMed]
    [Google Scholar]
  63. McDowell EJ, Callegari EA, Malke H, Chaussee MS. CodY-mediated regulation of Streptococcus pyogenes exoproteins. BMC Microbiol 2012;12:114 [CrossRef][PubMed]
    [Google Scholar]
  64. Wang CH, Chiang-Ni C, Kuo HT, Zheng PX, Tsou CC et al. Peroxide responsive regulator PerR of group A Streptococcus is required for the expression of phage-associated DNase Sda1 under oxidative stress. PLoS One 2013;8:e81882 [CrossRef][PubMed]
    [Google Scholar]
  65. Walker MJ, Barnett TC, McArthur JD, Cole JN, Gillen CM et al. Disease manifestations and pathogenic mechanisms of group A Streptococcus. Clin Microbiol Rev 2014;27:264–301 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000612
Loading
/content/journal/micro/10.1099/mic.0.000612
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error