1887

Abstract

The needle structures of type III secretion (T3S) systems are formed by the secretion and polymerization of a needle subunit protein, YscF in . A subset of T3S systems employ unique heterodimeric chaperones, YscE and YscG in , to prevent the polymerization of needle subunits within the bacterial cell. We demonstrate that the YscE/YscG chaperone is also required for stable YscF expression and for secretion of YscF. Overexpression of a functional maltose-binding protein (MBP)–YscG hybrid protein stabilized cytoplasmic YscF but YscF was not secreted in the absence of YscE. Furthermore, a YscE mutant protein was identified that functioned with YscG to stabilize cytosolic YscF; however, YscF was not secreted. These findings confirm a role for the YscE/YscG chaperone in YscF secretion and suggest that YscE may have a specific role in this process. Recent studies have shown that YscF deleted of its N-terminal 15 residues is still secreted and functional, suggesting that YscF may not require an N-terminal secretion signal. However, we demonstrate that YscF contains an N-terminal secretion signal and that a functional N-terminal signal is required for YscF secretion.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000610
2018-03-01
2020-09-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/164/3/338.html?itemId=/content/journal/micro/10.1099/mic.0.000610&mimeType=html&fmt=ahah

References

  1. Perry RD, Fetherston JD. Yersinia pest is—etiologic agent of plague. Clin Microbiol Rev 1997;10:35–66[PubMed]
    [Google Scholar]
  2. Eidson M, Thilsted JP, Rollag OJ. Clinical, clinicopathologic, and pathologic features of plague in cats: 119 cases (1977–1988). J Am Vet Med Assoc 1991;199:1191–1197[PubMed]
    [Google Scholar]
  3. Cobbs CG, Chansolme DH. Plague. Dermatol Clin 2004;22:303–312 [CrossRef][PubMed]
    [Google Scholar]
  4. Galindo CL, Rosenzweig JA, Kirtley ML, Chopra AK. Pathogenesis of Y. enterocolitica and Y. pseudotuberculosis in Human Yersiniosis. J Pathog 2011;2011:1–16 [CrossRef]
    [Google Scholar]
  5. Plano GV, Schesser K. The Yersinia pestis type III secretion system: expression, assembly and role in the evasion of host defenses. Immunol Res 2013;57:237–245 [CrossRef][PubMed]
    [Google Scholar]
  6. Kubori T, Sukhan A, Aizawa SI, Galán JE. Molecular characterization and assembly of the needle complex of the Salmonella typhimurium type III protein secretion system. Proc Natl Acad Sci USA 2000;97:10225–10230 [CrossRef][PubMed]
    [Google Scholar]
  7. Journet L, Agrain C, Broz P, Cornelis GR. The needle length of bacterial injectisomes is determined by a molecular ruler. Science 2003;302:1757–1760 [CrossRef][PubMed]
    [Google Scholar]
  8. Mueller CA, Broz P, Müller SA, Ringler P, Erne-Brand F et al. The V-antigen of Yersinia forms a distinct structure at the tip of injectisome needles. Science 2005;310:674–676 [CrossRef][PubMed]
    [Google Scholar]
  9. Haddix PL, Straley SC. Structure and regulation of the Yersinia pestis yscBCDEF operon. J Bacteriol 1992;174:4820–4828 [CrossRef][PubMed]
    [Google Scholar]
  10. Sun P, Tropea JE, Austin BP, Cherry S, Waugh DS. Structural characterization of the Yersinia pestis type III secretion system needle protein YscF in complex with its heterodimeric chaperone YscE/YscG. J Mol Biol 2008;377:819–830 [CrossRef][PubMed]
    [Google Scholar]
  11. Day JB, Guller I, Plano GV. Yersinia pestis YscG protein is a Syc-like chaperone that directly binds yscE. Infect Immun 2000;68:6466–6471 [CrossRef][PubMed]
    [Google Scholar]
  12. Dewoody RS, Merritt PM, Marketon MM. Regulation of the Yersinia type III secretion system: traffic control. Front Cell Infect Microbiol 2013;3:4 [CrossRef][PubMed]
    [Google Scholar]
  13. Edqvist PJ, Olsson J, Lavander M, Sundberg L, Forsberg A et al. YscP and YscU regulate substrate specificity of the Yersinia type III secretion system. J Bacteriol 2003;185:2259–2266 [CrossRef][PubMed]
    [Google Scholar]
  14. Wood SE, Jin J, Lloyd SA. YscP and YscU switch the substrate specificity of the Yersinia type III secretion system by regulating export of the inner rod protein YscI. J Bacteriol 2008;190:4252–4262 [CrossRef][PubMed]
    [Google Scholar]
  15. Day JB, Plano GV. A complex composed of SycN and YscB functions as a specific chaperone for YopN in Yersinia pestis. Mol Microbiol 1998;30:777–788 [CrossRef][PubMed]
    [Google Scholar]
  16. Ferracci F, Schubot FD, Waugh DS, Plano GV. Selection and characterization of Yersinia pestis YopN mutants that constitutively block Yop secretion. Mol Microbiol 2005;57:970–987 [CrossRef][PubMed]
    [Google Scholar]
  17. Cheng LW, Kay O, Schneewind O. Regulated secretion of YopN by the type III machinery of Yersinia enterocolitica. J Bacteriol 2001;183:5293–5301 [CrossRef][PubMed]
    [Google Scholar]
  18. Rosqvist R, Magnusson KE, Wolf-Watz H. Target cell contact triggers expression and polarized transfer of Yersinia YopE cytotoxin into mammalian cells. EMBO J 1994;13:964–972[PubMed]
    [Google Scholar]
  19. Rosqvist R, Persson C, Håkansson S, Nordfeldt R, Wolf-Watz H. Translocation of the Yersinia YopE and YopH virulence proteins into target cells is mediated by YopB and YopD. Contrib Microbiol Immunol 1995;13:230–234[PubMed]
    [Google Scholar]
  20. Davis AJ, Mecsas J. Mutations in the Yersinia pseudotuberculosis type III secretion system needle protein, YscF, that specifically abrogate effector translocation into host cells. J Bacteriol 2007;189:83–97 [CrossRef][PubMed]
    [Google Scholar]
  21. Torruellas J, Jackson MW, Pennock JW, Plano GV. The Yersinia pestis type III secretion needle plays a role in the regulation of Yop secretion. Mol Microbiol 2005;57:1719–1733 [CrossRef][PubMed]
    [Google Scholar]
  22. Quinaud M, Plé S, Job V, Contreras-Martel C, Simorre JP et al. Structure of the heterotrimeric complex that regulates type III secretion needle formation. Proc Natl Acad Sci USA 2007;104:7803–7808 [CrossRef][PubMed]
    [Google Scholar]
  23. Chatterjee C, Kumar S, Chakraborty S, Tan YW, Leung KY et al. Crystal structure of the heteromolecular chaperone, AscE-AscG, from the type III secretion system in Aeromonas hydrophila. PLoS One 2011;6:e19208 [CrossRef][PubMed]
    [Google Scholar]
  24. Plé S, Job V, Dessen A, Attree I. Cochaperone interactions in export of the type III needle component PscF of Pseudomonas aeruginosa. J Bacteriol 2010;192:3801–3808 [CrossRef][PubMed]
    [Google Scholar]
  25. Lindler LE, Klempner MS, Straley SC. Yersinia pestis pH 6 antigen: genetic, biochemical, and virulence characterization of a protein involved in the pathogenesis of bubonic plague. Infect Immun 1990;58:2569–2577[PubMed]
    [Google Scholar]
  26. Une T, Brubaker RR. In vivo comparison of avirulent Vwa- and Pgm- or Pstr phenotypes of yersiniae. Infect Immun 1984;43:895–900[PubMed]
    [Google Scholar]
  27. Goguen JD, Yother J, Straley SC. Genetic analysis of the low calcium response in Yersinia pestis mu d1(Ap lac) insertion mutants. J Bacteriol 1984;160:842–848[PubMed]
    [Google Scholar]
  28. Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 2000;97:6640–6645 [CrossRef][PubMed]
    [Google Scholar]
  29. Ali SA, Steinkasserer A. PCR-ligation-PCR mutagenesis: a protocol for creating gene fusions and mutations. Biotechniques 1995;18:746–750[PubMed]
    [Google Scholar]
  30. Edwards RA, Keller LH, Schifferli DM. Improved allelic exchange vectors and their use to analyze 987P fimbria gene expression. Gene 1998;207:149–157 [CrossRef][PubMed]
    [Google Scholar]
  31. Guzman LM, Belin D, Carson MJ, Beckwith J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 1995;177:4121–4130 [CrossRef][PubMed]
    [Google Scholar]
  32. Imai Y, Matsushima Y, Sugimura T, Terada M. A simple and rapid method for generating a deletion by PCR. Nucleic Acids Res 1991;19:2785 [CrossRef][PubMed]
    [Google Scholar]
  33. Plano GV, Straley SC. Mutations in yscC, yscD, and yscG prevent high-level expression and secretion of V antigen and Yops in Yersinia pestis. J Bacteriol 1995;177:3843–3854 [CrossRef][PubMed]
    [Google Scholar]
  34. Quinaud M, Chabert J, Faudry E, Neumann E, Lemaire D et al. The PscE-PscF-PscG complex controls type III secretion needle biogenesis in Pseudomonas aeruginosa. J Biol Chem 2005;280:36293–36300 [CrossRef][PubMed]
    [Google Scholar]
  35. Phan J, Austin BP, Waugh DS. Crystal structure of the Yersinia type III secretion protein YscE. Protein Sci 2005;14:2759–2763 [CrossRef][PubMed]
    [Google Scholar]
  36. Deng W, Marshall NC, Rowland JL, McCoy JM, Worrall LJ et al. Assembly, structure, function and regulation of type III secretion systems. Nat Rev Microbiol 2017;15:323–337 [CrossRef][PubMed]
    [Google Scholar]
  37. Osei-Owusu P, Jessen Condry DL, Toosky M, Roughead W, Bradley DS et al. The N terminus of type III secretion needle protein YscF from Yersinia pestis functions to modulate innate immune responses. Infect Immun 2015;83:1507–1522 [CrossRef][PubMed]
    [Google Scholar]
  38. Allaoui A, Schulte R, Cornelis GR. Mutational analysis of the Yersinia enterocolitica virC operon: characterization of yscE, F, G, I, J, K required for Yop secretion and yscH encoding YopR. Mol Microbiol 1995;18:343–355 [CrossRef][PubMed]
    [Google Scholar]
  39. Lloyd SA, Sjöström M, Andersson S, Wolf-Watz H. Molecular characterization of type III secretion signals via analysis of synthetic N-terminal amino acid sequences. Mol Microbiol 2002;43:51–59 [CrossRef][PubMed]
    [Google Scholar]
  40. Boland A, Sory MP, Iriarte M, Kerbourch C, Wattiau P et al. Status of YopM and YopN in the Yersinia Yop virulon: YopM of Y.enterocolitica is internalized inside the cytosol of PU5-1.8 macrophages by the YopB, D, N delivery apparatus. EMBO J 1996;15:5191–5201[PubMed]
    [Google Scholar]
  41. Trülzsch K, Roggenkamp A, Aepfelbacher M, Wilharm G, Ruckdeschel K et al. Analysis of chaperone-dependent Yop secretion/translocation and effector function using a mini-virulence plasmid of Yersinia enterocolitica. Int J Med Microbiol 2003;293:167–177 [CrossRef][PubMed]
    [Google Scholar]
  42. Bartra SS, Jackson MW, Ross JA, Plano GV. Calcium-regulated type III secretion of Yop proteins by an Escherichia coli hha mutant carrying a Yersinia pestis pCD1 virulence plasmid. Infect Immun 2006;74:1381–1386 [CrossRef][PubMed]
    [Google Scholar]
  43. Johnson DL, Stone CB, Mahony JB. Interactions between CdsD, CdsQ, and CdsL, three putative Chlamydophila pneumoniae type III secretion proteins. J Bacteriol 2008;190:2972–2980 [CrossRef][PubMed]
    [Google Scholar]
  44. Michiels T, Cornelis GR. Secretion of hybrid proteins by the Yersinia Yop export system. J Bacteriol 1991;173:1677–1685 [CrossRef][PubMed]
    [Google Scholar]
  45. Kenjale R, Wilson J, Zenk SF, Saurya S, Picking WL et al. The needle component of the type III secreton of Shigella regulates the activity of the secretion apparatus. J Biol Chem 2005;280:42929–42937 [CrossRef][PubMed]
    [Google Scholar]
  46. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM et al. UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 2004;25:1605–1612 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000610
Loading
/content/journal/micro/10.1099/mic.0.000610
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error